首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The multi-component “green” McGill Paleoclimate Model (MPM), which includes interactive vegetation, is used to simulate the next glacial inception under orbital and prescribed atmospheric CO2 forcing. This intermediate complexity model is first run for short-term periods with an increasing atmospheric CO2 concentration; the model's response is in general agreement with the results of GCMs for CO2 doubling. The green MPM is then used to derive projections of the climate for the next 100 kyr. Under a constant CO2 level, the model produces three types of evolution for the ice volume: an imminent glacial inception (low CO2 levels), a glacial inception in 50 kyr (CO2 levels of 280 or 290 ppm), or no glacial inception during the next 100 kyr (CO2 levels of 300 ppm and higher). This high sensitivity to the CO2 level is due to the exceptionally weak future variations of the summer insolation at high northern latitudes. The changes in vegetation re-inforce the buildup of ice sheets after glacial inception. Finally, if an initial global warming episode of finite duration is included, after which the atmospheric CO2 level is assumed to stabilize at 280, 290 or 300 ppm, the impact of this warming is seen only in the first 5 kyr of the run; after this time the response is insensitive to the early warming perturbation.  相似文献   

2.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

3.
We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.
Reinhard CalovEmail:
  相似文献   

4.
The model of Paillard and Parrenin (Earth Planet Sci Lett 227(3–4):263–271, 2004) has been recently optimized for the last eight glacial cycles, leading to two different relaxation models with model-data correlations between 0.8 and 0.9 (García-Olivares and Herrero (Clim Dyn 1–25, 2012b)). These two models are here used to predict the effect of an anthropogenic CO 2 pulse on the evolution of atmospheric CO 2, global ice volume and Antarctic ice cover during the next 300 kyr. The initial atmospheric CO 2 condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources (URR), with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. The next 20 kyr will have an abnormally high greenhouse effect which, according to the CO 2 values, will lengthen the present interglacial by some 25 to 33 kyr. This is because the perturbation of the current interglacial will lead to a delay in the future advance of the ice sheet on the Antarctic shelf, causing that the relative maximum of boreal insolation found 65 kyr after present (AP) will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation.  相似文献   

5.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   

6.
An intercomparison of eight EMICs (Earth system Models of Intermediate Complexity) is carried out to investigate the variation and scatter in the results of simulating (1) the climate characteristics at the prescribed 280 ppm atmosphere CO2 concentration, and (2) the equilibrium and transient responses to CO2 doubling in the atmosphere. The results of the first part of this intercomparison suggest that EMICs are in reasonable agreement with the present-day observational data. The dispersion of the EMIC results by and large falls within the range of results of General Circulation Models (GCMs), which took part in the Atmospheric Model Intercomparison Project (AMIP) and Coupled Model Intercomparison Project, phase 1 (CMIP1). Probable reasons for the observed discrepancies among the EMIC simulations of climate characteristics are analysed. A scenario with gradual increase in CO2 concentration in the atmosphere (1% per year compounded) during the first 70 years followed by a stabilisation at the 560 ppm level during a period longer than 1,500 years is chosen for the second part of this intercomparison. It appears that the EMIC results for the equilibrium and transient responses to CO2 doubling are within the range of the corresponding results of GCMs, which participated in the atmosphere-slab ocean model intercomparison project and Coupled Model Intercomparison Project, phase 2 (CMIP2). In particular EMICs show similar temperature and precipitation changes with comparable magnitudes and scatter across the models as found in the GCMs. The largest scatter in the simulated response of precipitation to CO2 change occurs in the subtropics. Significant differences also appear in the magnitude of sea ice cover reduction. Each of the EMICs participating in the intercomparison exhibits a reduction of the strength of the thermohaline circulation in the North Atlantic under CO2 doubling, with the maximum decrease occurring between 100 and 300 years after the beginning of the transient experiment. After this transient reduction, whose minimum notably varies from model to model, the strength of the thermohaline circulation increases again in each model, slowly rising back to a new equilibrium.  相似文献   

7.
It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.  相似文献   

8.
We present a method to analyse tracer transit time climatologies based on the concept of tracer age. The method consists of introducing idealized, short-lived radioactively decaying tracers in a general circulation model of the atmosphere. Tracer age since emission is calculated at any given place in the atmosphere from the ratio of the concentrations of tracers with different lifetimes emitted over the same source area. An obvious use of this method is the analysis of transport of real tracers with similar lifetimes (such as dust particles) during different climatic periods. Here, this method is applied to transport from southern hemisphere continental source areas towards Antarctica at the present, the last glacial maximum (21 kyr BP) and the last glacial inception (115 kyr BP). It is found that the variation over time of atmospheric transport efficiency towards Antarctica depends on the tracer source region: changes for Patagonian tracers differ from those for tracers originating over Australia and southern Africa. Transport towards Antarctica during the last glacial maximum (LGM) is faster for Patagonian, but not for Australian and Southern African tracers. It is shown that for the time of the last glacial inception, tracer transit time towards Antarctica is not significantly different from the present, although signs of a more vigorous atmospheric circulation can be seen in the simulation.  相似文献   

9.
Various experiments have been conducted using theLouvain-la-Neuve two-dimensional Northern Hemisphereclimate model (LLN 2-D NH) to simulate climate for thenext 130 kyr into the future. Simulations start withvalues representing the present-day NorthernHemisphere ice sheet, using different scenarios forfuture CO2 concentrations. The sensitivity of themodel to the initial size of the Greenland ice sheet,and to possible impacts of human activities, has alsobeen tested. Most of the natural scenarios indicatethat: (i) the climate is likely to experience a longlasting (50 kyr) interglacial; (ii) the next glacialmaximum is expected to be most intense at around 100kyr after present (AP), with a likely interstadial at60 kyr AP; and (iii) after 100 kyr AP continentalice rapidly melts, leading to an ice volume minimum 20kyr later. However, the amplitude and, to a lesserextent, the timing of future climatic changes dependon the CO2 scenario and on the initial conditionsrelated to the assumed present-day ice volume.According to our modelling experiments, man'sactivities over the next centuries may significantlyaffect the ice-sheet's behaviour for approximately thenext 50 kyr. Finally, the existence of thresholds inCO2 and insolation, earlier shown to besignificant for the past, is confirmed to be alsoimportant for the future.  相似文献   

10.
In a previous dynamical model the late Cenozoic climate variations were simulated, taking into account free and forced variations of atmospheric carbon dioxide acting in concert with changes in global ice mass and the deep ocean thermal state, all under the influence of the known earth-orbital radiative changes. This model is now extended by adding another relevant variable, bedrock/asthenosphere depression, including its associated ice-calving effects. Within the context of this extended model we (1) demonstrate the main results of previous bedrock/ice sheet models in what we believe is the simplest possible manner, (2) show how these previous models can exhibit the mid-Pleistocene transition with the inclusion of CO2 effects, (3) discuss the limitations of these previous bedrock models, and (4) illustrate the possibility of removing some of these limitations and accounting for further aspects of the paleoclimate record by using the full dynamical system that includes forced and free effects of CO2, as well as effects of bedrock depression and Milankovitch forcing. As one example of a new possibility, with bedrock effects included in the full system we can obtain a solution characterized by irregularly spaced, intermittent episodes in which the behavior is dominated either by near-40 kyr period oscillations or by near-100 kyr periods (such as prevailed over the Pleistocene).  相似文献   

11.
The model of Paillard and Parrenin (Earth Planet Sci Lett 227:263–271, 2004) was modified to obtain a closer fit to δ18O and CO2 time series for the last 800 kyr. The model performance can be improved if its CO2 sensitivity to I65 insolation is eliminated and if different response times are assumed for ablation/accumulation of ice. Correlations between simulated and experimental time series for CO2 and ice volume V increase from 0.59 and 0.63 to 0.79 and 0.88, respectively. According to these models, terminations are produced by I65 amplification through CO2-T and T-CO2 feedbacks, in synergy with an extra CO2 contribution from the deep ocean. This contribution is strongly dependent on ice-sheet extent and ice volume (or alternatively, CO2 concentration, which is a good proxy of Antarctic temperature) but is insensitive to Southern Ocean (SO) insolation on 21 February (I60). Change of deep SO state may be the “order parameter” for nonlinear deglacial changes. According to these models, 100 kyr periodicity of glacial cycles arises from the characteristic time of Antarctic ice sheet advance to the continental slope.  相似文献   

12.
Glacial geologic studies in the Southern Hemisphere (SH) mid-latitudes (40–54°S) indicate renewed glacial activity in southern South America (Patagonia) and New Zealand’s (NZ) South Island starting at ~7 kyr, the so-called neoglaciation. Available data indicate that neoglacial advances in these regions occurred during a rising trend in atmospheric CO2 and CH4 concentrations, lower-than-present but increasing summer insolation and seasonality contrasts. In this paper we examine the climatological context in which neoglaciations occurred through analysis of the complete Paleoclimate Modelling Inter-comparison Project (PMIP2) database of simulations at 6 kyr for the SH. We observe that the amplitude of the annual insolation cycle in the SH did not change significantly at 6 kyr compared to the pre-industrial values, the largest difference occurring in autumn (MAM, negative anomalies) and spring (SON, positive anomalies). The simulated changes in temperatures over the SH respond to the insolation changes, with a 1–2 month delay over the oceans. This results in a reduced amplitude of the annual cycle of temperature and precipitation over most continental regions, except over Patagonia and NZ, that show a slight increase. In contrast, large-scale circulation features, such as the low and upper level winds and the subtropical anticyclones show an amplified annual cycle, as a direct response to the increased/decreased insolation during the transitional seasons SON/MAM. In the annual mean, there is a small but consistent equatorward shift of the latitude of maximum wind speed of 1–3° over the entire SH, which results in a small increase of wind speed over the South Pacific and Atlantic Oceans north of ~50°S and a widespread decline south of 50°S. PMIP2 simulations for 6 kyr, indicate that in the annual mean, the SH mid-latitudes were colder, wetter and with stronger winds north of about 50°S. These conditions are consistent with the observed neoglacial advances in the region, as well as with terrestrial paleoclimate records from Patagonia that indicate cooling and a multi-millennial rising trend in Southern Westerly Wind intensity starting at ~7.8 kyr.  相似文献   

13.
Recently, W.F. Ruddiman (2003, Climatic Change, Vol. 61, pp. 261–293) suggested that the anthropocene, the geological epoch of significant anthropospheric interference with the natural Earth system, has started much earlier than previously thought (P. I. Crutzen and E. F. Stoermer, 2000, IGBP Newsletter, Vol. 429, pp. 623–628). Ruddiman proposed that due to human land use, atmospheric concentrations of CO2 and CH4 began to deviate from their natural declining trends some 8000 and 5000 years ago, respectively. Furthermore, Ruddiman concluded that greenhouse gas concentrations grew anomalously thereby preventing natural large-scale glaciation of northern North America that should have occurred some 4000–5000 years ago without human interference. Here we would like to comment on (a) natural changes in atmospheric CO2 concentration during the Holocene and (b) on the possibility of a Holocene glacial inception. We substantiate our comments by modelling results which suggest that the last three interglacials are not a proper analogue for Holocene climate variations. In particular, we show that our model does not yield a glacial inception during the last several thousand years even if a declining trend in atmospheric CO2 was assumed.  相似文献   

14.
Summary ?Analysis of available data shows that the duration of the glacial/interglacial cycle is determined by the time for the ocean to go through one major temperature cycle. At the start of an interglacial period, clear skies with consequent release of CO2 from the ocean, warms the atmosphere, which in turn eventually warms the ocean to its maximum. Cloudy skies then cause the climate (land and air temperature) to cool and the CO2 to be reabsorbed to start glaciation preliminaries. The albedo feedback effect of the glacial ice, a relatively warm ocean, which produces enhanced cloud cover, and the increased solubility of CO2 in cold seawater ensure a long period of glaciation. Glacial periods end when pack ice spreads out on the ocean cooling it until reduced cloud cover once again allows the Sun’s heat, unreflected by cloud cover, to melt the ice and release CO2 back into the atmosphere. Received May 22, 2002; accepted June 20, 2002  相似文献   

15.
Bill Ruddiman (Climatic Change, 61, 261–293, 2003) recently suggested that early civilisations could have saved us from an ice age because land management over substantial areas caused an increase in atmospheric CO2 concentration. Ruddiman suggests a decreasing “natural course” of the Holocene greenhouse gases concentrations and sea-level by referring to analogous situations in the past, namely the last three interglacials. An examination of marine isotopic stage 11 would perhaps make Ruddiman’s argument even more thought-challenging. Yet, the hypothesis of a natural lowering of CO2 during the Holocene contradicts recent numerical simulations of the Earth carbon cycle during this period. We think that the only way to resolve this conflict is to properly assimilate the palæoclimate information in numerical climate models. As a general rule, models are insufficiently tested with respect to the wide range of climate situations that succeeded during the Pleistocene. In this comment, we present three definitions of palæoclimate information assimilation with relevant examples. We also present original results with the Louvain-la-Neuve climate-ice sheet model suggesting that if, indeed, the Holocene atmospheric CO2 increase is anthropogenic, a late Holocene glacial inception is plausible, but not certain, depending on the exact time evolution of the atmospheric CO2 concentration during this period.  相似文献   

16.
The stability of the climate-vegetation system in the northern high latitudesis analysed with three climate system models of different complexity: A comprehensive 3-dimensional model of the climate system, GENESIS-IBIS, and two Earth system models of intermediate complexity (EMICs), CLIMBER-2 andMoBidiC. The biogeophysical feedback in the latitudinal belt 60–70° N, although positive, is not strong enough to support multiple steady states: A unique equilibriumin the climate-vegetation system is simulated by all the models on a zonal scale for present-day climate and doubled CO2 climate.EMIC simulations with decreased insolation also reveal a unique steady state. However, the climate sensitivity to tree cover, TF, exhibits non-linear behaviour within the models. For GENESIS-IBIS and CLIMBER-2, TF islower for doubled CO2 climate than for present-day climate due to a shorter snow season and increased relative significance ofthe hydrological effect of forest cover. For the EMICs, TF is higher for low tree fraction than for high treefraction, mainly due to a time shift in spring snow melt in response to changes in tree cover. The climate sensitivity to tree coveris reduced when thermohaline circulation feedbacks are accounted for in the EMIC simulations. Simpler parameterizations of oceanic processes have opposite effects on TF: TF is lower in simulations with fixed SSTs and higher in simulations with mixed layer oceans. Experiments with transient CO2 forcing show climate and vegetation not in equilibrium in the northern high latitudes at the end of the 20thcentury. The delayed response of vegetation and accelerated global warming lead to rather abrupt changes in northern vegetation cover in the first halfof the 21st century, when vegetation cover changes at double the present day rate.  相似文献   

17.
Various proxy data reveal that in many regions of the Northern Hemisphere (NH), the middle Holocene (6 kyr BP) was warmer than the early Holocene (8 kyr BP) as well as the later Holocene, up to the end of the pre-industrial period (1800 AD). This pattern of warming and then cooling in the NH represents the response of the climate system to changes in orbital forcing, vegetation cover and the Laurentide Ice Sheet (LIS) during the Holocene. In an attempt to better understand these changes in the climate system, the McGill Paleoclimate Model (MPM) has been coupled to the dynamic global vegetation model known as VECODE (see Part I of this two-part paper), and a number of sensitivity experiments have been performed with the green MPM. The model results illustrate the following: (1) the orbital forcing together with the vegetation—albedo feedback result in the gradual cooling of global SAT from about 6 kyr BP to the end of the pre-industrial period; (2) the disappearance of the LIS over the period 8–6 kyr BP, associated with vegetation—albedo feedback, allows the global SAT to increase and reach its maximum at around 6 kyr BP; (3) the northern limit of the boreal forest moves northward during the period 8–6.4 kyr BP due to the LIS retreat; (4) during the period 6.4–0 kyr BP, the northern limit of the boreal forest moves southward about 120 km in response to the decreasing summer insolation in the NH; and (5) the desertification of northern Africa during the period 8–2.6 kyr BP is mainly explained by the decreasing summer monsoon precipitation.  相似文献   

18.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   

19.
The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.  相似文献   

20.
Abstract

The most common method used to evaluate climate models involves spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. This approach clearly ignores any potential long‐term memory of the model ocean to past climatic conditions. Here we examine the validity of this approach through the 6000‐year integration of a coupled atmosphere–ocean–sea‐ice model. The coupled model is initially spun‐up with atmospheric CO2 concentrations and orbital parameters applicable for 6KBP. The model is then integrated forward in time to 2100. Results from this transient coupled model simulation are compared with the results from two additional simulations, in which the model is spun up with perpetual 1850 (preindustrial) and 1998 (present‐day) atmospheric CO2 concentrations and orbital parameters. This comparison leads to substantial differences between the equilibrium climatologies and the transient simulation, even at 1850 (in weakly ventilated regions), prior to any significant changes in atmospheric CO2. When compared to the present‐day equilibrium climatology, differences are very large: the global mean surface air and sea surface temperatures are ,0.5°C and ,0.4°C colder, respectively, deep ocean temperatures are substantially cooler, Southern Hemisphere sea‐ice cover is 38% larger, and the North Atlantic conveyor 16% weaker in the transient case. These differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene, as well as to its large thermal inertia. It is also demonstrated that a ‘cold start’ global warming simulation (one that starts from a 1998 equilibrium climatology) underestimates the global temperature increase at 2100 by ,10%. Our results question the accuracy of current techniques for climate model evaluation and underline the importance of using paleoclimatic simulations in parallel with present‐day simulations in this evaluation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号