首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Despite its importance for momentum and mass transfer across the air–sea interface, the dynamics of airflow over breaking waves is largely unknown. To fill this gap, velocity and vorticity distributions above short-gravity breaking waves have been measured in a wind-wave tank. A Digital Particle Image velocimetry technique (DPIV) was developed to accomplish these measurements above single breaking waves, propagating in mechanically-generated wave groups and forced by the wind. By varying the wind speed and initial characteristics of the groups, the airflow structure was captured over waves at different stages of the breaking process, and breaking with various intensities. The instantaneous airflow that separates from a sharp breaking crest is very similar to that occurring over a backward facing step. The separation bubble is however strongly unsteady: the steeper the wave crest and the larger the Reynolds number based on the crest-height, the higher the separated layer and the farther downwind the reattachment point. Instantaneous flow topology displays specific features of three-dimensional separation patterns. The tangential stress above the wave profile does not exhibit spikes at reattachment but grows progressively downwind from zero at reattachment to a value at the next crest approximately that found at the upwind breaking crest. Static pressure measurements revealed that large pressure falls are generated by vortices in the separated layer, as found in separated flows over solids. This study may provide useful data for theoretical and numerical modelling of the flow and associated phenomena.  相似文献   

2.
The air flow above breaking monochromatic Stokes waves is studied using a numerical nonlinear model of the turbulent air flow above waves of finite amplitude. The breaking event (spilling breaker) is parameterized by increasing the local roughness at the downwind slope of the wave, just beyond the crest. Both moderate slope waves and steep waves are considered. Above steep breaking waves, a large increase (typically 100%) in the total wind stress — averaged over the wave profile — is found compared to nonbreaking moderate slope waves. This is due to the drastic increase of the form drag, which arises from the asymmetrical surface pressure pattern above breaking waves. Both increase of wave slope (sharpening of the crest) and increase of local roughness in the spilling breaker area cause this asymmetrical surface pressure pattern. A comparison of the numerical results with the recent experimental measurements of Banner (1990) is carried out and a good agreement is found for the structure of the pressure pattern above breaking waves and for the magnitude of enhanced momentum transfer. Also: Dept. of Applied Physics, Techn. Univ. Delft, Netherlands.  相似文献   

3.
An intermittently-smoking smoke-wire was devised to visualize the airflow structure over individual crests of actual wind waves. The device was used under a moderate wind 6 m s-1 (maximum speed in the vertical cross-section) at a fetch 3.8 m in a wind-wave tunnel. Airflow patterns with separation were clearly visualized over wind-wave crests which were not accompanied by wave breaking characterized by air entrainment. A classification of 41 samples of airflow structures showed that two distinct patterns (with and without separation) exist, with significant frequency of occurrence for each.  相似文献   

4.
利用北京城区及周围3个站的Airda 3000边界层风廓线雷达提供的风廓线资料,详细分析了北京2005年8月3日的一次强降水天气过程.分析表明,降水前十几小时出现双层低空急流,急流层内结构复杂,呈现多中心结构.风廓线观测揭示,南高空槽和弱冷空气共同诱发产生的切变线低涡是产生此次暴雨天气的主要中尺度系统,暴雨系统有很复杂的垂直结构.强降水开始前数小时(夜间)城区地面风场辐合,在临近降水和降水开始时辐合(或切变)层向上发展,这一过程有利于降水的发展.  相似文献   

5.
We examine the structure of turbulent airflow over ocean waves. Based on an analysis of wind and wave observations derived from a moored and floating Air–Sea Interaction Spar buoy during the Shoaling Waves Experiment field campaign, we show that the cospectra of momentum flux for wind–sea conditions follow established universal scaling laws. Under swell-dominant conditions, the wave boundary layer is extended and the universal cospectral scaling breaks down, as demonstrated previously. On the other hand, the use of peak wave frequency to reproduce the universal cospectra successfully explains the structure of the turbulent flow field. We quantify the wave-coherent component of the airflow and this clarifies how ocean waves affect momentum transfer through the wave boundary layer. In fact, the estimated wave-induced stresses for swell-dominant conditions explain the anomalous cospectral shapes observed near the peak wave frequency.  相似文献   

6.
Miles' inviscid theory of surface wave generation by wind is (a) modified by replacing the logarithmic shear velocity profile with one which applies right down to the wave surface and which exhibits an explicit dependence on the roughness of the surface, and (b) extended to include the effects of the interaction of wave with air flow turbulence by considering the wave-modified mean flow as the mean of the actual turbulent air flow over water waves and using this in a mixing-length model.The surface pressure is shown to depend significantly on the flow conditions being aerodynamically smooth or rough. Its component in phase with the surface elevation is practically unaffected by the wave-turbulence interaction. However, such interaction tends to increase the rate of energy input ß from wind to waves travelling in the same direction, e.g., the increase is 2gk 2 for aerodynamically rough flow, where gk is the Von Karman constant. It also provides damping of waves in an adverse wind which can be about 10% of the growth rate in a favourable wind.  相似文献   

7.
Summary This study examines the exceptional Alpine south foehn event of 14–16 November 2002 using routine observations and high-resolution numerical simulations. Besides its long duration and an extremely high temperature level related to warm-air advection from the northern Sahara, this foehn event exhibited an unusual spatial structure of the low-level wind and temperature field. Whereas the foehn was largely restricted to the first half of 14 November in the western part of the Alps (Switzerland), it extended over the full period in the inner-Alpine valleys in the eastern Alps. The duration and intensity of the foehn also tended to decrease from the Alpine crest towards the northern rim of the Alps. Most surprisingly, continuous foehn even occurred on the windward side of the Alpine crest, namely in a basin located in the southeastern Alps. The distribution of the orographic precipitation associated with the foehn case was unusual as well. In Switzerland, intense precipitation was not restricted to the windward (southern) side of the Alps but extended to the northern side of the Alpine crest, particularly on 16 November. The results indicate that the spatio-temporal distribution of the foehn in the northern Alps was related to the fact that the western Alps were within a synoptic-scale transition zone between extremely warm air advected from the south and colder air lying over western Europe. The colder air was advected around the western Alps whereas extremely warm air descended from the Alpine crest farther east. Moreover, a small cyclone formed on 14 November north of the Alps and generated a shallow cold front propagating eastward along the northern Alps. Thus, the tendency towards foehn decreased from west to east and from the Alpine crest towards the north. The occurrence of foehn on the windward side of the Alpine crest was made possible by the extreme strength of the large-scale southerly flow, combined with the fact that the upstream precipitation field did not reach the southeastern edge of the Alps. Finally, the pronounced spillover of precipitation to the northern side in the Swiss part of the Alps appears to be related to the colder air present north of the crest. This prevented the formation of orographic gravity waves and downslope air motion, which usually leads to a rapid evaporation of the precipitation on the lee side of the Alpine crest.  相似文献   

8.
刘春  李跃凤  宋伟  刘自牧 《大气科学》2019,43(2):456-466
本文运用准地转模式,通过等值投影方法,将等值线转换为向量场结构,探讨西风带高低指数周期性转换的机制,结果表明:(1)仅有位能转化所引起的水平涡动输送,可能产生大振幅的行星波,但不会产生西风带的断裂;(2)在波流相互作用下,平均纬向风速与基波波幅满足分岔条件时,会出现西风带断裂现象,即当满足这个分岔条件时,更有利于北极与中纬度及副热带能量的相互输送。如北极冷空气的跨纬度输送会导致东亚极端冷事件的发生;同时,也能维持西风带的高低指数循环。  相似文献   

9.
斜压切变基流中横波型扰动的特征波动 Ⅱ:谱函数   总被引:3,自引:0,他引:3  
张立凤  张铭 《气象学报》2001,59(2):143-156
“斜压切变基流中横波型扰动的特征波动Ⅰ谱点分布”一文中分析了斜压切变基流中横波型扰动的谱点分布,这里又对其谱函数进行了分析讨论。结果表明当基流在垂直方向存在切变时,重力惯性波与涡旋波的谱函数在垂直方向上均可出现临界层,临界层的高度随频率σ而变化,即重力惯性波与涡旋波都存在连续谱,但涡旋波与重力惯性波连续谱的结构却不同;对天气尺度扰动,两支重力惯性波和1支涡旋波的连续谱不重叠,此时每支波动仅有1个临界层;而对次天气尺度的扰动,重力惯性波与涡旋波的连续谱区会发生重叠,在连续谱的重叠区,重力惯性波仍只有1个临界层,但涡旋波则可以有2个或3个临界层。无论是涡旋波还是重力惯性波其连续谱的波包随时间都是衰减的,但涡旋波波包比重力惯性波波包衰减得慢。  相似文献   

10.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

11.
Summary ?Numerical simulations of the south foehn in the region of Innsbruck are presented. They are semi-idealized in the sense that realistic orography but idealized initial and boundary conditions are used. The focus of this study is on typical features of the fully developed foehn, the breakthrough phase of the foehn and the diurnal cycle of the foehn. In addition, the impact of the large-scale wind direction is examined, including conditions leading to shallow foehn. The simulated flow fields have been found to be in very good agreement with observations except for a few minor details. In the lower part of the Sill Valley (the valley going from the Brenner pass down to Innsbruck), the wind speed is significantly higher than in the upper part. The acceleration can be traced back to the three-dimensional propagation of gravity waves excited over the adjacent mountain ridges. The amplitude of the gravity waves over the various mountain ridges depends sensitively on the wind direction, large wave amplitudes occurring only when the angle between the wind direction and the ridge line is not too small. For southwesterly or south–southwesterly large-scale flow, wave amplitudes are significantly larger to the east of Innsbruck than to the west. Foehn breakthrough at Innsbruck is usually preceded by a moderate westerly (downvalley) wind that is restricted to a rather small area around Innsbruck. The simulations reveal that this so-called pre-foehn is mainly a consequence of the gravity wave asymmetry, producing an asymmetric pressure perturbation with lower pressure to the east of Innsbruck. Shallow foehn, defined as a foehn occurring when the large-scale flow at crest height (700 hPa) is approximately westerly, is associated with relatively weak wave activity along the Sill Valley. It is found that at least a weak southerly wind component below crest height is necessary to maintain a significant shallow foehn over a longer time. Received October 10, 2001; accepted June 20, 2002 Published online: February 20, 2003  相似文献   

12.
利用常规气象资料、ERA5再分析资料、北京VDRAS资料以及雷达资料,对2021年7月31日发生在河北中南部的一次弓状强飑线过程进行分析。结果表明:(1)此次飑线过程发生在冷涡的背景下,500 hPa涡后的冷空气与850 hPa的暖脊叠加,建立了不稳定层结,在地面辐合线附近触发。(2)雷达回波由分散的对流单体合并加强,强弓形出现时,最大强度值超过55 dBZ,存在径向速度大值区和中层径向辐合等特征,这些都预示地面大风的出现,而回波悬垂预示冰雹出现。(3)雷达反演的风场可以显示飑线的水平和垂直结构,能清楚地指示飑线的出流、入流以及辐合区,对指示飑线不同部位的发展趋势有重要指示意义。(4)地面风场辐合导致雷暴单体触发,雷暴单体在不稳定的大气层结中获得快速发展,发展过程中0~3 km的垂直风切变逐渐增强,低层形成冷池,热力不均匀区域扩大,沿着扰动温度梯度大值区与风场辐合区,新生对流向东向南传播,分散对流单体合并演变为飑线。(5)从飑线发展阶段的热动力结构分析中发现,由倾斜上升气流与下沉气流形成垂直环流,下沉气流增强时,冷池效应增强,低层环境垂直风切变也增强,环境条件的改变是飑线发展的结果,同...  相似文献   

13.
Wave ray theory is employed to study features of propagation pathways(rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind(RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.  相似文献   

14.
斜压切变基流中横波型扰动的特征波动──Ⅰ:谱点分析   总被引:2,自引:0,他引:2  
张立凤  张铭 《气象学报》1999,57(5):571-580
文中对谱点的分布作了定性分析和数值计算。结果发现:当基流存在切变时,无论是重力惯性波还是涡旋波都存在连续谱。在通常的环境下,对天气尺度的扰动,3支波动的连续谱不重叠,3支波动明显可分;当扰动尺度小于临界波长l0时,可出现涡旋波和一支重力惯性波的两波连续谱区的重叠,当扰动尺度小于l0/2时,可出现涡旋波和一对重力惯性波的三波连续谱区的重叠,此时两种波动不可分。当出现重叠谱时,若出现不稳定扰动,其频率的实部落在重叠谱区。  相似文献   

15.
Summary The role of the subtropical jet stream (SJ) in the occurrence of heat waves in South Balkans and Greece is sought here. For this purpose ECMWF grid-point data is examined, concerning the Balkan heat wave of 5–9 July 1988, that cost human lifes, at least in Greece. For the city of Thessaloniki, Greece, a temperature budget is presented, as a function of time. It turns out that the most important heating mechanism is the adiabatic heating. Horizontal mass convergence at the maximum wind level (200 hPa) causes descent and adiabatic heating. The convergence occurs in association with the Hadley Cell, as well as with the right exit quadrant of an anticyclonically curved subtropical jet streak. As air parcels that exit the above jet streak slow down and turn anticyclonically, a strong ageostrophic wind current is established towards and to the right of the flow direction. This ageostrophic current converges above the northeastern Balkans. Downward ageostrophic motion emerges from the above area of horizontal convergence and heads towards the SSW, affecting the Balkans. From the above case study, it is concluded that intense heat waves are favoured in the South Balkans and Greece when the SJ is anticyclonically curved to the north of the Balkans and a jet streak is situated to the north west of the Balkans.  相似文献   

16.
利用中国气象局MICAPS地面、高空等常规观测资料及欧洲中心ERA-Interim的0.25°(纬度)×0.25°(经度)逐6 h再分析资料,对2015年11月5日至7日影响北京、河北的一次降雪过程的环流形势和动热力物理量进行了诊断分析,揭示了降雪特征及其形成原因。环流形势分析发现,此次降雪是在高空两槽一脊叠加短波槽活动天气背景下的“回流型”降雪。500 hPa有西伯利亚脊的发展和内蒙古地区气旋性涡旋及其向南发展出的弱槽,使得偏北冷空气与西南暖气流在河北地区相遇,伴随低层700 hPa的低涡发展,造成了此次降雪天气。500 hPa多小槽波动东移,使得雨雪天气维持较长时间;700 hPa受偏南暖湿气流影响,850 hPa为偏东风,地面高压底部偏东风配合倒槽,有较好的上升运动和水汽输送条件;高湿的大气环境条件和低层水汽辐合及抬升为降雪发生提供了充沛的水汽;高低空急流的形成,与散度场、涡度场和垂直速度场的高低空耦合配置,为降雪天气的发生创造了动力条件。  相似文献   

17.
中尺度大气波动的波谱和谱函数——数学模型和计算方法   总被引:3,自引:2,他引:3  
张铭  安洁 《大气科学》2007,31(4):666-674
作者得到了准二维Boussinesq方程组,并用其研究了中尺度大气波动的波谱和谱函数。在一定条件下对该方程组线性化并取标准模后,可将其初边值问题转化为矩阵的广义特征值问题来进行数值求解,这样就可知原问题波谱和谱函数的性质。当无基本流且取地转参数、层结参数为常数时,可求得其波谱和谱函数的解析解。此时该模式中仅包含有一对重力惯性内波模态,且各模态均是简谐波;模态越高,垂直波数越大则波动传播得越慢,所有的模态均为离散谱,并存在聚点。对此作者用数值解作了验算,结果表明,该数值求解方案合理可行,对不太高的模态其精度也令人满意。在无基本流然而考虑层结的垂直变化后,则一般无法求取解析解,为此进行了数值求解。这时该模式仍仅包含有一对重力惯性内波的离散谱模态,不过由于层结参数的变化,各模态结构与简谐波出现了偏差。  相似文献   

18.
副热带东南太平洋海温对东北夏季降水的影响及可能机制   总被引:1,自引:0,他引:1  
高晶  高辉 《大气科学》2015,39(5):967-977
诊断分析表明,前期副热带东南太平洋海温尤其是前春海温与东北夏季降水存在持续稳定的负相关关系。无论是在年际时间尺度还是年代际尺度上,冬、春、夏季海温演变趋势与降水均呈反位相。尺度分离结果显示,关键区海温与降水的显著负相关主要依赖于其年代际分量,但年际分量也起到较重要贡献。相关分析和合成分析结果都发现,当副热带东南太平洋海温偏低时,其上空可激发出反气旋式距平风场,而在关键区海域西北部激发出气旋式距平环流。同时在所罗门群岛和菲律宾南部分别出现反气旋式和气旋式距平环流。西太平洋副热带高压(副高)位置较常年偏西,副高区为反气旋式距平环流。在东北地区西侧则为气旋式距平环流。在这样的环流背景下,副高西侧的南风加强了源自南海和西太平洋的暖湿气流和北方冷空气在东北地区的交汇,从而使东北夏季多雨。反之,当东南太平洋海温偏高时,其激发的气旋及反气旋距平中心和偏低年刚好相反,副高位置偏东,其西侧的南方水汽输送偏弱,同时东北冷涡也偏弱,冷暖空气汇合形成的低空辐合弱,东北降水因此偏少。这表明,副热带东南太平洋海温异常时确实能激发出一个从关键海区到东北地区的跨越南北半球的气旋-反气旋交替波列,引发北半球中高纬度大气环流异常,从而影响东北夏季降水。  相似文献   

19.
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.  相似文献   

20.
Historically, our understanding of the air-sea surface stress has been derived from engineering studies of turbulent flows over flat solid surfaces, and more recently, over rigid complex geometries. Over the ocean however, the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the constant-stress turbulent atmospheric boundary layer over the ocean, the total air-sea stress not only includes the traditional turbulent and viscous components but also incorporates surface-wave effects such as wave growth or decay, air-flow separation, and surface separation in the form of sea-spray droplets. Because each individual stress component depends on and alters the sea state, a simple linear addition of all stress components is too simplistic. In this paper we present a model of the air-sea surface stress that incorporates air-flow separation and its effects on the other stress components, such as a reduction of the surface viscous stress in the separated region as suggested by recent measurements. Naturally, the inclusion of these effects leads to a non-linear stress formulation. This model, which uses a variable normalized dissipation rate of breaking waves and normalized length of the separation bubble, reproduces the observed features of the drag coefficient from low to high wind speeds despite extrapolating empirical wave spectra and breaking wave statistics beyond known limits. The model shows the saturation of the drag coefficient at high wind speeds for both field and laboratory fetches, suggesting that air-flow separation over ocean waves and its accompanying effects may play a significant role in the physics of the air-sea stress, at least at high wind speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号