首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Heterotrophic flagellates (HF) play an essential function in the microbial food loops as it is an agent of biochemical cycling of limiting nutrients and being a useful bio-indicator of environmental changes. However, in spite of its profound role in aquatic ecosystem studies regarding the evaluation of the spatial and seasonal patterns of the flagellate communities are lacking in Bangladeshi water, and therefore, study on community pattern of HF in a tropical river like Padma River could be a best example for other tropical rivers of the world. The present investigation was performed with the primary objectives to evaluate flagellate community structure, their spatial and seasonal distribution patterns, and the role of hydro-biological and physicochemical variables in determining their variability. The study was conducted at selected four study sites in Padma river, Bangladesh for a period of two distinct season (dry and wet season) in 2018. Standard procedures were followed in collecting, analyzing and interpreting of sampled data. The study revealed a total of 18 genera with different degrees of specificity to hydro-biological and physicochemical variables. It further establishes significant seasonal patterns, rather than spatial differences in the distribution of the flagellate communities. We found that the higher precipitation intensity during monsoon was the critical determinant in hydrological, biological, and physicochemical fluctuations which caused a significant decline in the value of the above variables. Likewise, total phytoplankton, zooplankton, and total heterotrophic bacterial abundance was also declined five-folds during the wet season. Similarly, total abundance of HF showed a significant decline in the community during the wet season. Genus wise relative abundance (RA%) of Euglena (23.81 %) was the highest during the dry season. In conclusion, this research and data analysis techniques propose unique insights on the flagellate links to environmental and hydro-biological regime in a tropical river with global implications.  相似文献   

3.
太湖浮游细菌种群基因多样性及其季节变化规律   总被引:8,自引:3,他引:5  
邢鹏  孔繁翔  高光 《湖泊科学》2007,19(4):373-381
为认识湖泊中浮游细菌的多样性及其变化规律,本研究采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)的方法,研究了太湖梅梁湾和湖心区浮游细菌种群16S rRNA基因多样性以及种群基因组成的季节变化特征.研究结果表明,太湖浮游细菌种群具有丰富的基因多样性.浮游细菌的丰度、DGGE条带数、种群的Shannon-Wiener指数、Simpson 指数和Pielou指数均呈现显著的季节变化规律:夏季及秋季浮游细菌的丰度、基因多样性及种群的均匀度较高,而冬季和春季则较低.浮游细菌种群的基因组成随时间变化.梅梁湾浮游细菌的丰度显著高于湖心.梅梁湾与湖心浮游细菌主要建群种的基因型存在显著差异.  相似文献   

4.
From December 2009 to December 2010, the total abundance of bacteria, the abundance of bacteria with electron transport chain, the abundance of viable saprotrophic bacteria, and the concentration of chlorophyll a were studied in water samples from lakes Svyatoe, Beloe, and Chernoe in Kosino-Ukhtomskoe district, Moscow City. The abundance of bacteria with active electron transport chain (CTC+bacteria) and its seasonal variations in Kosinskie Lakes are studied for the first time. Those lakes were found to contain well-developed and actively functioning heterotrophic bacterioplankton, the abundance of which have increased considerably since the 1930s–1940s. The seasonal dynamics of bacterioplankton has also changed. The largest absolute abundance of CTC+bacteria in lakes Svyatoe and Beloe was recorded in summer and autumn (from August to November). The abundance peak of CTH+bacteria in Lake Svyatoe was recorded in September and that in Lake Beloe, in October. The abundance of CTC+bacteria also showed a peak in April. In Lake Chernoe, the abundance of CTC+bacteria was much less than in lakes Svyatoe and Beloe; its maximums were recorded in December 2009 and April 2010. The share of CTC+bacteria in the total abundance of bacteria was 2.4–19.2% in Lake Svyatoe, 1.8–63.0% in Lake Beloe, and 0.96–22.5% in Lake Chernoe. Significant correlations were found to exist in all three lakes between the abundance of active bacterioplankton fraction and chlorophyll a content of water.  相似文献   

5.
The effects of ultraviolet-B (0.4 W m−2) radiation on the abundance, diversity and heterotrophic metabolism of bacterioneuston and bacterioplankton communities from Ria de Aveiro (Portugal) were assessed and compared to those of freshwater communities from Lake Vela (Portugal) in microcosm experiments. Exposure to 9 h of artificial ultraviolet radiation (UVR) led to 24–33% reduction in bacterial abundance and up to a 70% decrease in bacterial diversity. Maximum extracellular enzyme activity and monomer incorporation rates were reduced by 16–90% and 80–100%, respectively. Recovery of bacterial activity during post-UV dark incubations ranged from 10 to 100% for extracellular enzyme activity and 40% for monomer incorporation rates. In general, the heterotrophic activity of bacterioneuston was more inhibited by UVR than that of bacterioplankton. However, DGGE profiles revealed greater UVR-induced reductions in the diversity of bacterioplankton compared to bacterioneuston. The similarity between bacterioneuston and bacterioplankton communities in samples collected at early morning was lower than at noon (pre-exposed communities) and increased upon experimental irradiation, possibly indicating selection for UV-resistant bacteria. The observation that UV exposure resulted in enhanced reduction of bacterioneuston activity, but a lower reduction in bacterial diversity accompanied by enhanced dark recovery potential compared to bacterioplankton, indicates re-directioning of bacterioneuston metabolism towards stress defence/recovery strategies rather than the sustained heterotrophic metabolism. Our results indicate that UVR can significantly decrease the abundance, diversity and activity of bacteria inhabiting the surface and sub-surface layers of freshwater and estuarine systems with potentially important impacts on the biogeochemical cycles in these environments.  相似文献   

6.
The spatial variations of the picoplankton (photoautotrophic and heterotrophic microorganisms) in the Ahe atoll lagoon were studied in May and October 2008 to assess whether they were affected by human activities along the atoll. Spatial patterns were studied using 10 sampling stations chosen according to the location of the anthropogenic activities (pearl farming, harbor). Experiments were also carried out to determine whether bacterial growth, with or without predators, was limited by inorganic (N and P) substrates. The results showed that heterotrophic bacterioplankton abundance was superior to the photoautotrophic organisms, especially in May. Significant increases in bacterial abundance were observed in May after 24h incubation with +P and +N (but not in October). All samples complied with the quality levels for fecal indicator bacteria (FIB) defined by the European Union and there was no evidence that human sewage had any impact on picoplankton over the whole atoll.  相似文献   

7.
The study of seasonal dynamics of net phytoplankton was carried out above and below the hydroelectric plant (HP) on the Pas ka River. Correlations were found between the abundance of diatoms and conductivity, O2, PO4; the abundance of cyanobacteria and water temperature and conductivity, and the abundance of chlorophytes and O2 and Ntot. Multiple correlations revealed the most significant factor for diatom development is PO4, for cyanobacteria is water temperature, and for chlorophytes is Ntot. A lower abundance and biomass of phytoplankton, and less species diversity and nutrient concentrations were registered below the HP than above it. The seasonal dynamics of phytoplankton abundance provided similar results. The maximum biomass of the assemblage was found earlier below the HP, in April, than above it, in May. However, no differences were recorded in the dominant species within phytoplankton abundance. The phytoplankton biomass was dominated by the Melosira varians and Spirogyra sp., which are typical taxa of plant periphyton and possibly emanate from the concrete elements of the dam. This HP changed the local hydrological and environmental conditions, affecting available nutrients, and thereby phytoplankton development in the vegetative season.  相似文献   

8.
We examined the zooplankton abundance and composition of Laguna Grande, a floodplain wetland of the Lower Paraná Basin (Argentina), during an extraordinary drought–flood cycle that affected both the environment and the biological conditions of the lake. Low waters were characterised by remarkably high conductivities and pH values, and high phytoplankton and bacterioplankton abundances with cyanobacterial blooms, while high waters showed opposite features. In relation to zooplankton, the mean abundances of all the taxonomic groups (rotifers, cladocerans, copepods, ciliates, and heterotrophic nanoflagellates) were slightly higher at low waters. Major changes were observed in the specific composition of metazooplankton: the euryhaline species assemblage that dominated in the dry warm period was replaced by several oligohaline littoral and planktonic species characteristic of the Paraná River Basin, when the water level rose. Mean species richness values at high waters doubled those of low waters and were directly correlated to water depth. Most of the rotifers of the genus Brachionus and the cladoceran Moina micrura switched from parthenogenetic to sexual reproduction during low waters, as a response to a harsh environment and crowding. We suggest that the main changes in the environmental conditions in this eutrophic floodplain lake are driven by the hydrology, which regulates the zooplankton succession. The herein described shifts in the zooplankton structure and dynamics of Laguna Grande over an extraordinary drought–flood cycle contribute to the understanding of the processes that might occur under the scenarios predicted by climate change models.  相似文献   

9.
An assessment of water quality measurements during a long‐lasting low water period in the Elbe River is presented. Weekly samples were taken from May to December 2003 at a sampling site in the middle part of the Elbe River. For multivariate data analysis, 34 parameters of 46 samplings were considered. As a result of this analysis, 78% of the variance of the data set is explained by five factors. They can be assigned to the following latent variables: season (37.5%) > tributaries (12.7%) > re‐suspension (10.4%) > discharge (9.4%) > complexation (8.5%). For the investigated sampling site, two key processes were identified as dominating factors on the water quality during low water conditions. First, seasonal phytoplankton development caused changes in redox conditions with consequences for re‐solution of pollutants from sediments. Second, tributaries have a higher impact on the main stream, due to changes in mixing processes. Therefore, in addition to flood investigations, monitoring strategies, and management plans should be developed in order to survey changes in water quality during low water conditions.  相似文献   

10.
浮游细菌群落对河流变化具有高度响应性,并可能影响河流生境的生物地球化学过程.因此,了解浮游细菌群落的时空特征,阐明其在河流生态系统中的生态功能具有重要科学意义.于2016年6月和12月对珠江下游浮游细菌群落结构的时空特征进行调查研究,并采用16S rRNA高通量测序技术对样品组分进行分析.结果表明细菌群落主要由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、抗微菌门(Verrucomicrobia)和蓝细菌门(Cyanobacteria)组成.其中变形菌门相对丰度最高,主要包括β-变形菌纲(Betaproteobacteria)、α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria).季节上,丰水期Shannon-Wiener和Chao 1多样性指数高于枯水期其中芽孢杆菌纲(Bacilli)和黄杆菌纲(Flavobacteriia)差异显著;空间上,珠江下游可分为西江沿线、珠三角河网中部和广州市周边3个区域.采用RDA分析表明水温(WT)、溶解氧(DO)、磷酸盐(PO_4~(3-)-P)、硅酸盐(SiO_4--Si)、总磷(TP)和透明度(SD)是驱动细菌群落变化最显著的环境因子,可影响细菌的增殖代谢.其中WT和SD是影响季节差异的重要因素将丰水期和枯水期区分开;而DO、化学需氧量(COD)和营养盐(PO_4~(3-)-P、SiO_4~(2-)-Si、TP)是影响空间差异的重要因素将西江沿线、珠三角河网中部和广州市周边区分开.PICRUSt功能预测分析表明,转运体(Transporters)、ABC转运体(ABC transporters)、DNA修复和重组蛋白(DNA repair and recombination proteins)等是珠江下游浮游细菌群落所表达的主要功能其中转运体和ABC转运体功能丰水期明显高于枯水期.研究结果可为珠江下游生态环境保护提供科学参考依据.  相似文献   

11.
The general features of phytoplankton seasonal succession, abundance and distribution in Lake Kinneret, as based on observations from 1970 through 1989, are summarised. Throughout this period of observation, the large, thecate dinoflagellatePeridinium gatunense formed an annual, late winter to early spring bloom resulting in very high standing stock levels. The dominance of these dinoflagellates has a profound impact upon the lake ecosystem. In the summer and fall the phytoplankton assemblage consisted mainly of nanoplanktonic green and blue-green algae and diatoms. Picophytoplankton, mainly picocyanobacteria, were present in low numbers during the dinoflagellate bloom but reached maximum abundance (105 cells · ml–1) in the epilimnion during the summer and fall. Within a given year, chlorophyll concentrations correlated well with estimates of wet weight biomass, derived from microscope counts. However, interannual averages of chlorophyll did not correlate closely with those for wet weight biomass. Both wet weight biomass and chlorophyll standing stocks fluctuated more than 2 fold from 1970 through 1989 but no extreme, long-term, continuous trend of increase or decrease was observed. Thus, phytoplankton has remained relatively stable although there has been a significant rise in the levels of summer-fall biomass since 1981. The main factor responsible for this may have been increased available phosphorus; the abundance of phytoplankton did not show any clear, long-term relation to that of herbivorous zooplankton.  相似文献   

12.
Spatio-temporal variability of prokaryotic water column communities inside and outside a Polynesian tropical lagoon subjected to pearl oysters farming was assessed in terms of abundance by quantitative PCR and diversity by DGGE. Communities and operational taxonomic units (OTUs) were analysed according to dry/rainy seasons and free-living/particle-attached state. Bacterial density was higher in the lagoon compared to ocean and a seasonal trend was observed. No influence of the localisation within lagoon or of the planktonic/attached states was noticed on bacterial abundance and diversity. The OTUs belonged to Cyanobacteria, to heterotrophic groups in Proteobacteria and Flavobacteria. Archaeal abundance showed seasonal tendency and particle-prevalence, but no effect of lagoon or oceanic location was observed. Lagoon and oceanic archaeal diversity were different and Euryarchaeota (MG-II, MBG, and Halobacteria) were detected. During the dry season, planktonic and particle-associated community differed, whereas at rainy season, both communities were similar and included members usually associated with coral.  相似文献   

13.
Bacterioplankton play critical roles in biogeochemical cycling. Although spatial and temporal variations in bacterioplankton community compositions (BCCs) within individual habitat have been reported, knowledge gaps remain for studies conducted within different habitats. In this work, we examined the seasonal and spatial variability of BCCs in Nanfei River and Lake Chaohu which had significant environmental heterogeneity using a high-throughput sequencing technique of 16S rRNA gene amplicons. The results showed that spatial variation has a more obvious impact on the BCCs than seasonal changes. The microbial diversity gradually decreased and BCCs changed obviously along water flow direction from Nanfei River to the western and estern parts of Lake Chaohu over all seasons. LEfSe analysis showed that Nanfei River had higer abundance of species belonging to the orders Rhodocyclales, Methylococcales, Campylobacterales and Flavobacteriales, samples from eastern part of Lake Chaohu were abundant in taxonomies including the order Rickettsiales, while the western part had high abundance of taxonomies belonging to the order Chroococcales. The redundancy analysis (RDA) indicated that BCCs in Nanfei River were associated with high nutrient (TP, PO4-P, TN, NH3-N, NO2-N and NO3-N) concentrations and electrical conductivity. Variance partitioning RDA analysis indicated that the combined effects of all variables may be most important affecting BCCs. This study may provide a framework for modeling the change in bacterioplankton communities through different habitats from a river to lake.  相似文献   

14.
一座新建水库——广东剑潭水库浮游植物动态特征   总被引:3,自引:1,他引:2  
剑潭水库是珠江水系东江下游新建水库,2006年10月开始蓄水,2007年6月蓄水完毕.该水库属直流型水库,2008年水力滞留时间为0.46-3.62d.2006-2008年调查了该水库浮游植物的动态特征.结果表明,调查期间浮游植物丰度为182-6267cells/ml,从空间变化看,在调查期间,浮游植物丰度由上游向下游呈上升趋势.从年间变化看,蓄水后第一年坝区浮游植物丰度不仅明显高于蓄水前和蓄水期间,并且浮游植物最高丰度出现在蓄水后第一年的枯水期(12月).与此同时,在蓄水过程中,浮游植物群落结构也逐渐发生了变化,蓝藻相对丰度明显上升,绿藻相对丰度呈下降趋势.水力滞留时间、透明度和总磷是影响剑潭水库浮游植物时空变化的重要因素.高的平流损失率和低的透明度使得浮游植物现存量与水库氮、磷水平并不相符.相对较长的水力滞留时间、较高的透明度和总磷导致了浮游植物在蓄水后第一年(2008年)的枯水期出现一个峰值.  相似文献   

15.
太湖北部湖区水体中浮游细菌的动态变化   总被引:9,自引:7,他引:2  
冯胜  高光  秦伯强  陈默 《湖泊科学》2006,18(6):636-642
2003年1月-12月对太湖北部湖区8个采样点进行了每月1次、为期一年的水体中浮游细菌数量的测定,并同步对溶解性有机碳(DOC),总氮,总磷,叶绿素a和温度进行了测定,结果表明:浮游细菌数量存在明显的季前变化和空间差异,夏秋季浮游细菌数量比冬春季高,最高值出现在夏季的7月份,平均值为7.43×106cell/ml,最低值出现在3月份,平均值为3.14×106cells/ml,最低值与最高值差异达73%;污染严重的河口区浮游细菌数量明显高于湖心区,最高值出现在河口的6#点,平均值为5.51×106cells/ml,比湖心区最低值8#点高83.2%,并呈现从河口、湾内至湖心随水体污染程度减轻而逐步递减的趋势;浮游细菌数量与温度和浮游植物量显著相关.而与水体中营养盐无关,预示着太湖水体中的营养盐已处于较高的水平,不再是浮游细菌生长的限制因素,而来源于浮游植物的有机碳可能是其生长的重要碳源.  相似文献   

16.
The spatial and seasonal distribution of the viable heterotrophic population and three heterotrophic physiological groups, i.e. ammonifyers, nitrate reducers and sulphate reducers, were studied in two reservoirs in the province of Vizcaya (Spain). Using indicative parameters, both reservoirs were classified as warm monomictics, one hypereutrophic and the other mesotrophic. A direct relation between the size of the bacterial populations and the trophic levels of the reservoirs was observed. Likewise, the distributions of the bacterial populations in the water column are basically different. In the hypereutrophic lake there is a direct relationship between the bacterial distribution and the physical-chemical environment of the reservoir that cannot be observed in the mesotrophic lake.  相似文献   

17.
The river Elbe is a large eutrophic lowland river with high primary production and high phytoplankton biomass in the growing season. The objective of the study was to gain basic knowledge of the role of dead zones for phytoplankton distribution and the oxygen balance of the river Elbe. At two sampling stations water temperature, oxygen concentration, conductivity, pH value, turbidity, and chlorophyll fluorescence were measured with high precision to learn about the distribution of these parameters across the cross‐sections. The structures indicate differences in the intensity of physical and biological processes between the shallow waters near the shores, which are characterized by groyne fields, and the deep bulk flow. The conductivity clearly shows the high transverse mixing intensity in the groyne fields in contrast to the bulk flow. Groyne fields and the first, the groyne head near margin lamella of the bulk flow can be regarded as a unit. Groyne field results indicate higher primary production of phytoplankton, oxygen release, and higher pH. The turbidity of water entering the groyne fields decreases rapidly because of sedimentation within a short time. The groyne head lamella of the bulk flow sometimes shows higher chlorophyll fluorescence than the central lamella of the bulk flow and the water of the groyne field. The processes which contribute to the observed distribution are discussed, but could not yet be quantified. A modification of the dead zone model is proposed.  相似文献   

18.
Longitudinal heterogeneity in reservoirs is especially related to increase in sedimentation and water transparency along the river/dam axis. Consequently, primary production tends to reach higher values in intermediate regions where there is a balance between the availability of the main resources (light and nutrients) suitable for phytoplankton growth. Many factors such as reservoir morphometry, retention time, thermal stratification and geographical location can affect the boundaries between these regions. The tropical Funil Reservoir (Brazil), despite a low retention time, has experienced severe eutrophication in recent decades, with persistent cyanobacteria blooms. During the course of 1 year, samples were collected at four stations along the reservoir (fluvial, intermediate and lentic compartments) to evaluate if spatial heterogeneity could affect the occurrence and distribution of these blooms along the reservoir. Although the reservoir has a short annual retention time (mean 41.5 days), the typical zonation pattern was observed for the main abiotic variables and phytoplankton abundance. However, higher biomass occurred in the lentic compartment rather than in the intermediate zone. Despite the peculiar heterogeneity in total biomass, the phytoplankton composition and seasonal variability were very similar along the entire reservoir, with a few marked differences only in the fluvial zone. Phytoplankton total biomass in Funil Reservoir was high, even in periods of lower seasonal retention time (around 15 days), and was especially related to high input of nutrients. Moreover, retention time directly affects the spatial heterogeneity of phytoplankton biomass, since strong variability was only observed during the cold-dry season, corresponding to periods of longer retention time (around 80 days). While high availability of nutrients promoted high cyanobacterial biomass in the entire system, the few periods of heterogeneous spatiality seemed to be related to changes in retention time.  相似文献   

19.
The River Elbe is one of the biggest streams carrying pollutants of all kinds into the North Sea. However, investigations of direct effects of the Elbe water on river life are not numerous. Early life stages of common whitefish and carp were reared under comparable conditions in water of the River Elbe, and in tap water, respectively. No direct effects on the viability of the fry could be found by observing mortality and growth rates in both treatments. Whitefish larvae were severely infested by parasitic ciliates which were able to build up a dense population in the river water. In these experiments life conditions for the protozoa seemed to be much better than in tap water. Mortality rates of early larvae of common whitefish were lower in the Elbe water than in tap water. Mortality, growth rate and starvation resistance of carp fry was equal in river and tap water.  相似文献   

20.
The Pearl River Estuary is among the largest estuaries in the subtropical areas of the world. Along the salinity and turbidity gradient between the freshwater reach of the Pearl River and the marine water of the South China Sea, the spatial and temporal composition and abundance of phytoplankton was examined in relation to physic-chemical variables during the dry and wet seasons of 2009. Water samples for phytoplankton and environmental parameters were collected from 18 stations during two seasons along a transect from upper estuary to estuarine and marine sectors. A total of 162 species belonging to 7 phyla were identified, with diatoms dominated in both seasons while dinoflagellates proliferated in autumn. Two main clusters and three sub-clades under each main cluster corresponding to seasons and water sectors were defined with multivariate analysis (cluster and nMDS). Based on the species composition and abundance of phytoplankton, both seasonal and spatial variability were observed at a significant level (ANOSIM: season effect, R=0.896, P<0.01; station effect, R=0.463, P<0.01). The correlation analysis between biotic and abiotic variables indicated that instead of the “proverbial” anthropogenic nutrients loading and salinity gradient, the best 2-variable combination (temperature and turbidity) showed a significant effect on the pattern of phytoplankton assemblages (ρw=0.49, BIOENV analysis) between wet and dry seasons in the Pearl River Estuary. This result suggests that physical disturbance either natural or manmade is a more important factor in regulating the phytoplankton community structure within the hydrologically distinct zone of estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号