首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

2.
The main objective of this paper was to investigate the dewatering behaviour of a clayey uranium ore slurry. The slurry (containing 28% clay size) exhibited moderate water adsorption (w l  = 83% and w p  = 30%). Primarily composed of muscovite (46%) and quartz (30%), the clay minerals included illite (8%), chlorite (5%) and kaolinite (2%) alongside a CEC of 41 (cmol(+)/kg) with Ca2+ and Mg2+ as the dominant cations. Likewise, the high EC (17,600 μS/cm) and ionic strength (1.15 mol/L) indicated a flocculated microstructure due to the presence of SO4 2? (22,600 mg/L) and Mg2+ (1340 mg/L) in the slurry water. Settling included sedimentation and consolidation at low initial solids condition (25–35%) whereas only consolidation was observed at high initial solids contents (40–50%). The average k reduced from 1.2 × 10?6 m/s (initial s = 25%) to 5.3 × 10?8 m/s (initial s = 50%) along with a void ratio reduction from 7.4 to 2.6. Due to thixotropic strength, volume compressibility during consolidation showed apparent pre-consolidation at low effective stress (0.3–2 kPa) with a reduction in void ratio from 2.6 to 2.5. The e s was found to be 2.46 at σ′ = 2 kPa and was followed by a steeper slope with the void ratio reducing to 2.1 at σ′ = 31 kPa. Likewise, the hydraulic conductivity during consolidation decreased from 2.6 × 10?9 m/s (at e = 2.6) to 2.0 × 10?10 m/s (at e = 2.1).  相似文献   

3.
Response of the coastal regions of eastern Arabian Sea (AS) and Kavaratti Island lagoon in the AS to the tropical cyclonic storm `Phyan??, which developed in winter in the south-eastern AS and swept northward along the eastern AS during 9?C12 November 2009 until its landfall at the northwest coast of India, is examined based on in situ and satellite-derived measurements. Wind was predominantly south/south-westerly and the maximum wind speed (U10) of ~16 m/s occurred at Kavaratti Island region followed by ~8 m/s at Dwarka (Gujarat) and ~7 m/s at Diu (located south of Dwarka) as well as two southwest Indian coastal locations (Mangalore and Malpe). All other west Indian coastal sites recorded maximum wind speed of ~5?C6 m/s. Gust factor (i.e., gust-to-speed ratio) during peak storm event was highly variable with respect to topography, with steep hilly stations (Karwar and Ratnagiri) and proximate thick and tall vegetation-rich site (Kochi) exhibiting large values (~6), whereas Island station (Kavaratti) exhibiting ~1 (indicating consistently steady wind). Rainfall in association with Phyan was temporally scattered, with the highest 24-h accumulated precipitation (~60 mm) at Karwar and ~45 mm at several other west Indian coastal sites. Impact of Phyan on the west Indian coastal regions was manifested in terms of intensified significant waves (~2.2 m at Karwar and Panaji), sea surface cooling (~5°C at Calicut), and moderate surge (~50 cm at Verem, Goa). The surface waves were south-westerly and the peak wave period (T p) shortened from ~10?C17 s to ~5?C10 s during Phyan, indicating their transition from the long-period `swell?? to the short-period `sea??. Reduction in the spread of the mean wave period (T z) from ~5?C10 s to a steady period of ~6 s was another manifestation of the influence of the cyclone on the surface wave field. Several factors such as (1) water piling-up at the coast supported by south/south-westerly wind and seaward flow of the excess water in the rivers due to heavy rains, (2) reduction of piling-up at the coast, supported by the upstream penetration of seawater into the rivers, and (3) possible interaction of upstream flow with river run-off, together resulted in the observed moderate surge at the west Indian coast. Despite the intense wind forcing, Kavaratti Island lagoon experienced insignificantly weak surge (~7 cm) because of lack of river influx and absence of a sufficiently large land boundary required for the generation and sustenance of wave/wind-driven water mass piling-up at the land?Csea interface.  相似文献   

4.
This study measures the reaction rate of dolomite and aragonite (calcite) into Mg-calcite at 800, 850, and 900°C and 1.6 GPa. The dry synthetic dolomite-aragonite aggregate transformed very rapidly into dolomite-calcite polycrystalline aggregate while Mg-calcites formed at a relatively slow rate, becoming progressively richer in Mg with run time. We modeled the reaction progress semi-empirically by the first-order rate law. The temperature dependence of the overall transport rate of MgCO3 into calcite can be described by the kinetic parameters (E?=?231.7 kJ/mol and A o ?=?22.69 h?1). Extrapolation using the Arrhenius equation to the conditions during exhumation of UHPM rocks indicates that the reaction of dolomite with aragonite into Mg-saturated calcite can be completed as the P-T path enters the Mg-calcite stability field in a geologically short time period (<1 Ky). On the other hand, the extrapolation of the rate to prograde metamorphic conditions reveals that the Mg-calcite formed from dolomitic marble in the absence of metamorphic fluid may not reach Mg-saturation until temperatures corresponding to high-grade metamorphism (e.g., >340°C and >10 My). SEM-EDS analysis of individual calcite grains shows compositional gradients of Mg in the calcite grains. The Mg-Ca inter-diffusion coefficient at 850°C is around 1.68?×?10?14 m2/sec if diffusion is the major control of the reaction. The calculated closure temperatures for Ca-Mg inter-diffusion as a function of cooling rate and grain size reveal that Ca/Mg resetting in calcite in a dry polycrystalline carbonate aggregate (with grain size around 1 mm) may not occur at temperatures below 480°C at a geological cooling rate around 10°C/My, unless other processes, such as short-circuit interdiffusion along grain boundaries and dislocations, are involved.  相似文献   

5.
A pilot-scale study was conducted to characterize the performance of molasses' release from a well-type barrier system harboring solidifying molasses named slowly released molasses (SRM) as a reactive medium to promote indigenous denitrifying activity. A SRM rod was made by mixing molasses with paraffin wax, cellulose, and silica sands in a cylindrical mold. Two SRM systems harboring 30 and 60 SRM rods, referred to as Systems A and B, respectively, were constructed in a large flow tank (L × W × D = 8 m × 4 m × 2 m) filled with natural sands. These two systems continuously delivered molasses with groundwater flow over 96 days, with decreasing molasses' concentrations ranging from 763 to 95 and 1,150 to 183 mg L?1 as chemical oxygen demand values (COD) for Systems A and B, respectively. From simulation results with an aid of the upscaled mass transfer function (MTF) model, the molasses' mass flux was slowly decreased with time, exhibiting 57, 11, and 3 mg COD day?1 in 10, 100, and 365 days in System A, and 138, 25, and 6 mg COD day?1 in System B, respectively; 90, 70, and 50 % of total molasses' mass remained after 12, 63, and 267 days in System A and 12, 65, and 291 days in System B, respectively. This study demonstrates that SRM system can provide a remedial alternative for long-term in situ treatment of nitrate-contaminated groundwater.  相似文献   

6.
The Guarani aquifer system (GAS) represents one of the biggest aquifers in the world and is the most relevant groundwater resource in South America. For the first time, by combining field and laboratory measurements, a high-resolution aquifer analog model of fluvial–aeolian sediments of the GAS in São Paulo State (Brazil) is constructed. Three parallel sections of frontal outcrops, 28 m × 5.8 m, and two parallel sections of lateral outcrops, 7 m × 5.8 m, are recorded during open-pit mining of sandy sediments and describe in detail the three-dimensional distribution of the local lithofacies and hydrofacies. Variations of hydraulic conductivity, K, and porosity, n, are resolved on the centimeter scale, and the most permeable units of the fluvial–aeolian facies association are identified. The constructed aquifer analog model shows moderate hydraulic heterogeneity and a mean K value of 1.36 × 10?4 m/s, which is greater than the reported range of K values for the entire GAS in São Paulo State. The results suggest that the examined sedimentary unit constitutes a relevant portion of the GAS in São Paulo State in the context of groundwater extraction and pollution. Moreover, the constructed aquifer analog is considered an ideal basis for future numerical model experiments, aiming at in-depth understanding of the groundwater flow and contaminant transport patterns at this GAS portion or at comparable fluvial–aeolian facies associations.  相似文献   

7.
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering.  相似文献   

8.
An earthquake of magnitude 6.9 (M w) occurred in the Sikkim region of India on September 18, 2011. This earthquake is recorded on strong-motion network in Uttarakhand Himalaya located about 900 km away from the epicenter of this earthquake. In this paper acceleration record from six far-field stations has been used to compute the source parameters of this earthquake. The acceleration spectra of ground motion at these far-field stations are strongly affected by both local site effects and near-site anelastic attenuation. In the present work the spectrum of S-phase recorded at these far-field stations has been corrected for anelastic attenuation at both source and site and the site amplification terms. Site amplifications at different stations and near-site shear wave attenuation factor have been computed by the technique of inversion of acceleration spectra given by Joshi et al. (Pure Appl Geophys 169:1821–1845, 2012a). For estimation of site amplification and shear wave quality factor [Q β (f)] at the recording sites, ten local events recorded at various stations between July 2011 and December 2011 have been used. The obtained source spectrum from acceleration records is compared with the theoretical source spectrum defined by Brune (J Geophys Res 76:5002, 1970) at each station for both horizontal components of the records. Iterative forward modeling of theoretical source spectrum gives the average estimate of seismic moment (M o), source radius (r o) and stress drop (Δσ) as (3.2 ± 0.8) × 1026 dyne cm, 13.3 ± 0.8 km and 59.2 ± 8.8 bars, respectively, for the Sikkim earthquake of September 18, 2011.  相似文献   

9.
Shear wave velocity (V S) estimation is of paramount importance in earthquake hazard assessment and other geotechnical/geo engineering studies. In our study, the shear wave velocity was estimated from ground roll using multichannel analysis of surface wave (MASW) technique making use of dispersive characteristics of Rayleigh type surface waves followed by imaging the shallow subsurface basaltic layers in an earthquake-prone region near Jabalpur, India. The reliability of MASW depends on the accurate determination of phase velocities for horizontally traveling fundamental mode Rayleigh waves. Inversion of data from surface waves resulted in a shear wave velocity (V S) in the range of 200–1,200 m/s covering the top soil to weathering and up to bedrock corresponding to a depth of 10–30 m. The P-wave velocity (V P) obtained from refraction seismic studies at these locations found to be comparable with V S at an assumed specific Poisson’s ratio. A pair of selected set of V S profiles over basalt which did not result in a hazardous situation in an earthquake of moderate magnitude are presented here as a case study; in other words, the shear wave velocity range of more than 200 m/s indicate that the area is highly unlikely prone to liquefaction during a moderate or strong earthquake. The estimated depth to basalt is found to be 10–12 m in both the cases which is also supported by refraction studies.  相似文献   

10.
Particle size distribution (PSD) is an often used parameter to describe and quantify fragmentation of deformed rock. Our analyses of shock deformed sandstone show that dynamic fragmentation influences the PSD, expressed as fractal dimension (D-value). Image analysis was used to derive fractal dimensions from a hypervelocity impact cratering experiment (2.5 mm steel sphere, 4.8 km/s) and a planar shock recovery experiment (2.5 GPa). The D-values in the cratering experiment decrease from 1.74 at the crater floor to 0.84 at a distance of 7.2 mm to the crater floor. The D-values found in this experiment are closely related to the microstructural features found at distinct distances from the crater floor. The obtained values are in good agreement with the D-values reported for fault zones, impact sites and deformation experiments. The D-value measured in the shock recovery experiment is 2.42. Such high D-values were usually attributed to abrasive processes related to high strain. Since the strain in our experiment is only ∼23% we suggest that at highly dynamic deformation very high d-values can be reached at small strain. To quantify this, numerical impact modelling has been used to estimate strain rates for the impact experiment. This is related to the activation of more inherent flaws and fracture bifurcation at very high strain rates ∼>102 s−1.  相似文献   

11.
Nanoscale zero-valent iron flakes for groundwater treatment   总被引:1,自引:0,他引:1  
Even today the remediation of organic contaminant source zones poses significant technical and economic challenges. Nanoscale zero-valent iron (NZVI) injections have proved to be a promising approach especially for source zone treatment. We present the development and the characterization of a new kind of NZVI with several advantages on the basis of laboratory experiments, model simulations and a field test. The developed NZVI particles are manufactured by milling, consist of 85 % Fe(0) and exhibit a flake-like shape with a thickness of <100 nm. The mass normalized perchloroethylene (PCE) dechlorination rate constant was 4.1 × 10?3 L/g h compared to 4.0 × 10?4 L/g h for a commercially available reference product. A transport distance of at least 190 cm in quartz sand with a grain size of 0.2–0.8 mm and Fe(0) concentrations between 6 and 160 g/kg (sand) were achieved without significant indications of clogging. The particles showed only a low acute toxicity and had no longterm inhibitory effects on dechlorinating microorganisms. During a field test 280 kg of the iron flakes was injected to a depth of 10–12 m into quaternary sand layers with hydraulic conductivities ranging between 10?4 and 10?5 m/s. Fe(0) concentrations of 1 g/kg (sand) or more [up to 100 g/kg (sand)] were achieved in 80 % of the targeted area. The iron flakes have so far remained reactive for more than 1 year and caused a PCE concentration decrease from 20.000–30.000 to 100–200 µg/L. Integration of particle transport processes into the OpenGeoSys model code proved suitable for site-specific 3D prediction and optimization of iron flake injections.  相似文献   

12.
South India is one of the regions in the world that has the highest background radiation levels. In this region, river sediments are used in large quantities as building material. Therefore, the knowledge of the radionuclides distribution in such sediments is important for assessing their potential adverse effects on humans residing in buildings made of sediment material. For this goal, we focus on the determination of the natural radioactivity levels and magnetic properties in sediment samples collected from 33 locations along the southwestern Bharathapuzha river originating from the Anamalai hills. The sediment samples were subdivided into two categories according to particle size. It is observed that the average activity concentrations of 226Ra, 232Th, and 40K in sediment samples varied greatly with granulometric and geological differences. The average values of 226Ra, 232Th, and 40K and its associated radiological hazard parameters for category II samples (particle size between 149 μm and 2 mm) were lower than category I sediment samples (bulk samples). Moreover, the average radionuclide activity concentrations (except for 40K) and the calculated radiation hazard parameters are higher in the lowland region compared to the highland and the midland regions. The mass-specific magnetic susceptibility values ranged widely along the river, as well as between physiographic regions, e.g., average values for category I sediment samples were 950.2 × 10?8, 351.1 × 10?8 and 131.8 × 10?8 m3 kg?1 (for high-, mid- and lowland regions, respectively). Differences between physiographic regions and sediment fractions from both radioactivity determinations and magnetic parameters were analyzed with statistical tests and multivariate analysis, which showed the advantages of using both independent techniques.  相似文献   

13.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

14.
This study contains the finding of geophysical investigations conducted at the proposed science complex site at Lagos State University, Ojo, Lagos, Nigeria. Surface wave and seismic refraction tests are non-invasive seismic techniques and have been used to determine the shear wave velocity profile of soil deposits. The methods provide a simplified characterization of subsurface in two-dimensional (2D) (distance and depth) profiles. Seismic records obtained were processed/analyzed by Seis-Imager software to obtain one-dimensional shear wave velocity (Vs) distribution. Multiple Vs obtained were integrated and used to construct two-dimensional Vs map. The measured P- and S-wave velocities were also used to estimate Poisson’s ratio, rigidity modulus, and N-values. The study had shown that the area investigated composed mainly of loose sediments (clay formation) to the depth of 12 m with P-wave velocity ranging between 125 and 205 m/s and corresponding S-wave velocity between 60 and 100 m/s. The results presented in this study will be vital information for the engineers in construction of the proposed science complex.  相似文献   

15.
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (G R) ranges from 3.4 × 10?6 to 5.2 × 10?7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (N B) at nucleation ranges from 7.9 × 104 mm?3 to 1.8 × 105 mm?3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.  相似文献   

16.
The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19–11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9–40 and 40–79 m, respectively. The mean K estimates by the GSA methods are 3.62–292.86 m/day for shallow aquifer layers and 0.97–209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69–693.79 m2/day, storage coefficient 1.01?×?10?7–2.13?×?10?4 and leakance 2.01?×?10?7–34.56?×?10?2 day?1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1–3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.  相似文献   

17.
A series of small scale tests, simulating multi-hole blasts have been performed to establish the effect of delays on blast fragmentation. The blasts were performed in high quality granodiorite blocks, which were cut from stone prepared by dimensional stone quarry operations. The pattern used was equilateral triangular, with a distance of 10.2 cm between boreholes, which had a diameter of 11 mm, were loaded with detonating cord and the coupling medium was water. The delays used were achieved using different lengths of detonating cord for the cases of delays between 0 and 100 μs between holes and a sequential blasting machine firing seismic detonators for larger delays up to 4 ms. All fragments were collected and screened. The experiments showed that the worst fragmentation was achieved with simultaneous initiation of all charges. Fragmentation improved with the delay time between holes up to 1 ms between holes. If the experiments are scaled up, the results show that in granodiorite, fragmentation optimization requires delays of few milliseconds per metre of burden. The findings, agree with previously published work, involving larger scale experiments and other rock types.  相似文献   

18.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

19.
Coastal shoreline hardening is intensifying due to human population growth and sea level rise. Prior studies have emphasized shoreline-hardening effects on faunal abundance and diversity; few have examined effects on faunal biomass and size structure or described effects specific to different functional groups. We evaluated the biomass and size structure of mobile fish and crustacean assemblages within two nearshore zones (waters extending 3 and 16 m from shore) adjacent to natural (native wetland; beach) and hardened (bulkhead; riprap) shorelines. Within 3 m from shore, the total fish/crustacean biomass was greatest at hardened shorelines, driven by greater water depth that facilitated access to planktivore (e.g., bay anchovy) and benthivore-piscivore (e.g., white perch) species. Small-bodied littoral-demersal species (e.g., Fundulus spp.) had greatest biomass at wetlands. By contrast, total biomass was comparable among shoreline types within 16 m from shore, suggesting the effect of shoreline hardening on fish biomass is largely within extreme nearshore areas immediately at the land/water interface. Shoreline type utilization was mediated by body size across all functional groups: small individuals (≤60 mm) were most abundant at wetlands and beaches, while large individuals (>100 mm) were most abundant at hardened shorelines. Taxonomic diversity analysis indicated natural shoreline types had more diverse assemblages, especially within 3 m from shore, although relationships with shoreline type were weak and sensitive to the inclusion/exclusion of crustaceans. Our study illustrates how shoreline hardening effects on fish/crustacean assemblages are mediated by functional group, body size, and distance from shore, with important applications for management.  相似文献   

20.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号