首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
泥石流堆积过程数值模拟及防灾效益评估方法   总被引:1,自引:0,他引:1  
罗元华  陈崇希 《现代地质》2000,14(4):484-488
根据动量守恒和质量守恒原理 ,研究建立了泥石流堆积过程的数学模型 ,运用有限差分法求解数学模型 ,用以模拟泥石流堆积的动态过程。在此基础上 ,结合云南省东川市深沟泥石流堆积区的实际情况 ,对泥石流灾害的危险范围和程度进行了分析评价 ;结合各类受灾体经济损失评价 ,对比防灾工程造价 ,进行了减灾效益分析评价。  相似文献   

2.
泥石流堆积运动特征分析   总被引:3,自引:0,他引:3  
罗元华 《地球科学》2003,28(5):533-536
以云南省东川市深沟泥石流堆积区为研究对象, 根据深沟可能爆发泥石流灾害的区域范围、规模、性质和介质特征, 按爆发20年一遇(频率5%)和100年一遇(频率1%)的泥石流灾害预测规模, 运用数值模拟方法模拟了泥石流爆发历时过程的堆积运动特征及空间分布形态; 分析了不同规模泥石流堆积运动过程中, 泥石流堆积厚度及堆积运动速度在空间上和时间上的变化发展趋势.   相似文献   

3.
四川省都江堰市龙池地区泥石流危险性评价研究   总被引:1,自引:0,他引:1  
汶川地震灾区震后泥石流灾害较震前活跃,对灾区泥石流危险性进行评价是灾后重建过程中合理防灾减灾的基础工作。通过研究泥石流灾害事件中的泥石流规模、泥石流沟堆积扇面积及相应的灾害损失等基础资料,提出以泥石流在泥石流沟堆积扇上的平均堆积厚度替代泥石流规模作为主要危险因子的单沟泥石流危险性评价方法。用该方法对汶川震区都江堰市龙池镇龙溪河流域2010年"8.13"泥石流事件中的29条沟谷型泥石流进行危险性评价,评价结果中9条为高度危险,12条为中度危险,8条为低度危险。用以泥石流规模为主要危险因子的单沟泥石流危险性评价方法进行对比评价,2种评价方法中有65.5%的泥石流的危险性评价结果一致。以泥石流沟堆积扇平均堆积厚度为主要危险因子的单沟泥石流危险性评价方法更能突出规模对泥石流综合危险度的贡献,能更好地反映小泥石流流域和小泥石流堆积扇的泥石流在中小规模的泥石流总量下的危险程度。  相似文献   

4.
泥石流堆积形态影响要素的数值模拟   总被引:1,自引:0,他引:1  
本文运用泥石流堆积数值模拟方法,对影响泥石流堆积形态的主要因素分别进行了变化趋势的模拟分析,展示了堆积区地形坡度的差异、泥石流体重度变化和一次泥石流冲出量大小不同等所产生的泥石流堆积形态和空间展布范围的变化规律.研究结果可应用于分析预测不同条件下、不同类型的泥石流灾害发生范围及强度分布,进而为灾害风险评估提供基础.  相似文献   

5.
城市泥石流风险评价探讨   总被引:5,自引:1,他引:5       下载免费PDF全文
唐川  朱静 《水科学进展》2006,17(3):383-388
探讨了城市泥石流风险评价的系统方法,该方法包括泥石流扇形地危险区划、城市易损性分析和城市泥石流风险评价三个主要内容。泥石流堆积扇危险区划是基于数值模拟计算出的泥深和流速分布图进行叠合完成的。以美国高分辨率的“快鸟”卫星影像为数据源,完成了研究区的城市土地覆盖类型遥感解译,在此基础上完成了城市泥石流易损性分析,应用地理信息系统提供的统计和分析工具,完成了研究区泥石流风险评价。该风险区划图可用于指导对泥石流易泛区的不同风险地带的土地利用进行规划和决策,从而达到规避和减轻灾害的目的,也为生活在泥石流危险区的城市居民提供有关灾害风险信息,以作避难和灾害防治的依据。  相似文献   

6.
通过溪洛渡地区1∶2.5万区域地质调查获得的第一手系统资料的综合分析,论述区内地质灾害事件所形成的第四系(本文简称灾害第四系)——滑坡堆积、堵江堰塞堆积和泥石流堆积的特征,首次确认区内堵江堰塞堆积的存在,并结合工程实际对灾害第四系的稳定性进行评价。  相似文献   

7.
洮河流域中游位于甘肃省南部,属泥石流高发区。耳阳河是洮河流域中游的一条重要支流,泥石流灾害尤其严重。为研究甘肃省南部小流域泥石流灾害的危险性,以耳阳河流域为研究对象,选取流域内居民相对集中的6条泥石流沟,用FLO-2D模型模拟了2012年5月10日实际降雨条件下的泥石流运动特征和堆积特征,得到了泥石流流量随时间的变化曲线、泥石流流体深度和流速在沟谷不同地段的空间分布,对“5·10”泥石流灾害过程进行了重现。模拟结果表明:泥石流爆发15~30 min后达到洪峰,约3 h后流量逐步回落;泥石流流动速度在流通区快,到沟口迅速下降,固体物质淤积阻塞河道。通过野外现场调查和遥感解译,发现模拟得到的泥石流发生过程、堆积区分布、泥石流影响区与现场调查和访问得到的实际情况基本相符。进而,采用相同的方法和参数,对2.0%和0.2%降水频率下泥石流的堆积范围、深度和流速进行了模拟分析,分别制作了上述工况下的泥石流危险性分区图,圈定了潜在威胁较大的人口聚集区,为耳阳河流域泥石流灾害的预防和治理提供了依据,也为类似泥石流提供了一种危险性分析的技术方法。  相似文献   

8.
三眼峪特大泥石流堆积特征   总被引:1,自引:0,他引:1  
通过野外勘查与试验,认为三眼峪泥石流沟是一个高频泥石流沟,历史上发生多次重大泥石流灾害事件,多期泥石流堆积物在沟道及沟口上下超覆叠置。结合泥石流发生前后遥感影像对比,采用ArcGIS平台进行分析,“8.8”特大泥石流一次最大冲出固体物质总量达152.18×10^4m^3,所到之处房毁江堵,并形成长约1.9km的狭长堆积,堆积量110.58×10^4m^3,最大堆积厚度达10.8m。因泥石流堆积特征是泥石流发生、发展、活动过程的客观记录,分析了三眼峪早期和“8.8”泥石流在不同部位的堆积特征和破坏程度,为泥石流综合整治和灾后重建规划提供参考。  相似文献   

9.
基于层次分析法的重庆山区矿山泥石流潜势度评价   总被引:1,自引:0,他引:1       下载免费PDF全文
重庆是典型的山地城市,矿产资源丰富,降水充沛,为矿山泥石流灾害较为严重的城市。为分析重庆山区孕育矿山泥石流灾害的地质环境特征,本文选取渣堆坡角、渣堆高度、渣堆堆积时间等13个因子构建了矿山泥石流潜势度评价指标体系,利用层次分析法确定各指标权重,建立了矿山泥石流潜势度综合指数评价模型,并以秀山溪口矿山泥石流为研究对象,通过计算得到研究区矿山泥石流潜势度指数为8.51,区内地质环境孕育矿山泥石流的潜在能力高,评价结果与实际情况吻合。  相似文献   

10.
泥石流形成受诸多不确定性因素共同影响,是典型的复杂系统。沟谷泥石流形成与流域环境特征密切相关,故采用流域作为评价单元;并通过DEM模型生成地形数据,遥感解译获取森林覆盖数据,地质图矢量化提取地质构造线及岩性数据。为一定程度上解决评价变量间的多重共线性,通过主成分分析进行降维加权评价;同时,为了刻画评价变量绝对差异,采用绝对阈值进行10级分类赋值。为了避免与危险度不是简单的线性关系的坡度指标直接标准化处理对载荷计算和多变量之间的共线性估计造成影响,各原始变量在分级赋值的基础上再借助区间端点进行分级线性插值。评价结果显示,安宁河流域西昌北段东岸中约一半沟谷单元危险度得分在5分以上,形势较为严峻,其中热水河分值高达9.24。评价分级图叠置研究区泥石流灾害点后发现较危险和极危险区沟谷内部或沟口堆积区都发生了泥石流灾害,7个临界危险区中有4个流域内部或汇流通道前端堆积区形成了泥石流灾害,危险度评价结果和灾害点分布较为符合。  相似文献   

11.
Flow motion and deposition characteristics of debris flows are of concern regarding land use planning and management. A simple model for the prediction of mentioned characteristics has been developed, incorporating a friction–collision rheological model. It demonstrated to be able to satisfactorily simulate the two-dimensional behavior of laboratory results and the one-dimensional behavior of two real debris-flow events. The numerical results show that the topography of the channel bed, the yield stress level of the debris flows, and the inflow pattern have significant influence on the simulated flow motion and deposition characteristics of debris flows. In addition, the predicted run-out distance has been compared with analytical solutions and field observations. The model could be employed for the preliminary evaluation of one-dimensional run-out distance of granular debris flows provided that the volume of the debris involved in the initial mobilization is assumed.  相似文献   

12.
The accurate prediction of runout distances, velocities and the knowledge of flow rheology can reduce the casualties and property damage produced by debris flows, providing a means to delineate hazard areas, to estimate hazard intensities for input into risk studies and to provide parameters for the design of protective measures. The application of most of models that describe the propagation and deposition of debris flow requires detailed topography, rheological and hydrological data that are not always available for the debris-flow hazard delineation and estimation. In the Cortina d’Ampezzo area, Eastern Dolomites, Italy, most of the slope instabilities are represented by debris flows; 325 debris-flow prone watersheds have been mapped in the geomorphological hazard map of this area. We compared the results of simulations of two well-documented debris flows in the Cortina d’Ampezzo area, carried on with two different single-phase, non-Newtonian models, the one-dimensional DAN-W and the two-dimensional FLO-2D, to test the possibility to simulate the dynamic behaviour of a debris flow with a model using a limited range of input parameters. FLO-2D model creates a more accurate representation of the hazard area in terms of flooded area, but the results in terms of runout distances and deposits thickness are similar to DAN-W results. Using DAN-W, the most appropriate rheology to describe the debris-flow behaviour is the Voellmy model. When detailed topographical, rheological and hydrological data are not available, DAN-W, which requires less detailed data, is a valuable tool to predict debris-flow hazard. Parameters obtained through back-analysis with both models can be applied to predict hazard in other areas characterized by similar geology, morphology and climate.  相似文献   

13.
Driftwood deposition from debris flows at slit-check dams and fans   总被引:3,自引:1,他引:2  
Experience shows that debris flows containing large woody debris (driftwood) can be more damaging than debris flows without driftwood. In this study, the deposition process of debris flows carrying driftwood was investigated using numerical simulations and flume experiments. Debris-flow trapping due to driftwood jamming in a slit-check dam was also investigated. A numerical model was developed with an interacting combination of Eulerian expression of the debris flow and Lagrangian expression of the driftwood, in which the fluctuating coordinates and rotation of the driftwood were treated stochastically. The calculated shapes and thicknesses of a debris-flow fan and the positions and orientations of the deposited driftwood on a debris-flow fan were consistent with experimental flume results. The jamming of driftwood in a slit-check dam was evaluated based on geometry and probability. The simulated results of outflow discharge and the proportion of driftwood passed through the slit-check dam also agreed with the experimental results.  相似文献   

14.
Debris-flow simulations on Cheekye River, British Columbia   总被引:4,自引:4,他引:0  
Cheekye River fan is the best-studied fan complex in Canada. The desire to develop portions of the fan with urban housing triggered a series of studies to estimate debris-flow risk to future residents. A recent study (Jakob and Friele 2010) provided debris-flow frequency-volume and frequency-discharge data, spanning 20-year to 10,000-year return periods that form the basis for modeling of debris flows on Cheekye River. The numerical computer model FLO-2D was chosen as a modelling tool to predict likely flow paths and to estimate debris-flow intensities for a spectrum of debris-flow return periods. The model is calibrated with the so-called Garbage Dump debris flow that occurred some 900  years ago. Field evidence suggests that the Garbage Dump debris flow has a viscous flow phase that deposited a steep-sided debris plug high in organics in centre fan, which then deflected a low-viscosity afterflow that travelled to Squamish River with slowly diminishing flow depths. The realization of a two-phase flow led to a modelling approach in which the debris-flow hydrograph was split into a high viscosity and low viscosity phase that were modelled in chronologic sequence as two separate and independent modelling runs. A perfect simulation of the Garbage Dump debris flow with modelling is not possible because the exact topography at the time of the event is, to some degree, speculative. However, runout distance, debris deposition and deposit thickness are well known and serve as a good basis for calibration. Predictive analyses using the calibrated model parameters suggest that, under existing conditions, debris flows exceeding a 50-year return period are likely to avulse onto the southern fan sector, thereby damaging existing development and infrastructure. Debris flows of several thousand years return period would inundate large portions of the fan, sever Highway 99, CN Rail, and the Squamish Valley road and would impact existing housing development on the fan. These observations suggest a need for debris-flow mitigation for existing and future development alike.  相似文献   

15.
Landslides and debris flows occurr in China frequently and cause disastrous losses of life and property. The risk assessment of landslides and debris flows and their spatial variations were comparatively analyzed in this paper, which has great significance for disaster prevention. This article selected 1 km×1 km grid as the assessment unit and with support of GIS technique, analyzed landslide and debris-flow risk distribution and their spatial variations from 2000 to 2010. The research results indicated that the spatial distribution of risk classes in 2000 and 2010 was obviously discrepant. Overall, taking the Heihe-Tengchong population density line as the boundary, the west of the line is mainly low risk area; the east of the line is mainly high risk area. Compared with the risk of 2000, the risk values of 2010 increased, with the high risk area and low risk area enlarged, moderate risk area reduced. The moderate risk area is the most unstable and sensitive risk area, and its risk class variation is significant. However, China is not a region with the high risk of landslide and debris-flow hazard at present. In the following next 10 years, the risk of landslides and debris flows in China will continue to increase.  相似文献   

16.
Three debris-flow simulation model software have been applied to the back analysis of a typical alpine debris flow that caused significant deposition on an urbanized alluvial fan. Parameters used in the models were at first retrieved from the literature and then adjusted to fit field evidence. In the case where different codes adopted the same parameters, the same input values were used, and comparable outputs were obtained. Results of the constitutive laws used (Bingham rheology, Voellmy fluid rheology and a quadratic rheology formulation which adds collisional and turbulent stresses to the Bingham law) indicate that no single rheological model appears to be valid for all debris flows. The three applied models appear to be capable of reasonable reproduction of debris-flow events, although with different levels of detail. The study shows how different software can be used to predict the debris-flow motion for various purposes from a first screening, to predict the runout distance and deposition of the solid material and to the different behaviour of the mixtures of flows with variation of maximum solid concentration.  相似文献   

17.
粘性泥石流入汇主河极大地改变了入汇区的河床堆积地貌,其动力学实质是非牛顿流体与牛顿流体的交互作用,合理描述粘性泥石流入汇区河床堆积动力过程对于划定粘性泥石流风险区范围和认知流域地貌演化具有重大意义。粘性泥石流入汇区河床堆积体时空演化过程有别于粘性泥石流在地表的纯堆积过程,通过回顾国内外学者在泥石流入汇区堆积动力学方面的研究成果,可以发现在粘性泥石流入汇区内堆积现象复杂,存在"阵性"输移、"元堆积"和龙头"水滑"等特殊现象。但目前的研究对泥石流和水流交互机制都进行了简化,一是将粘性泥石流视为挟沙水流,直接采用异重流方法;二是将粘性泥石流视为"半固态",只考虑水流的输沙特征,研究认为基于这样的简化不足以描述粘性泥石流入汇的物理过程和特殊现象,也低估了粘性泥石流交汇区冲击速度和堆积范围。同时,根据粘性泥石流入汇区河床堆积动力过程的研究现状,结合粘性泥石流入汇的特殊运动过程,提出未来可开展的工作:一是粘性泥石流入汇的物理过程和其交互机制的合理简化;二是普适性高的粘性泥石流-水流堆积动力学模型的建立。   相似文献   

18.
陈宁生  田树峰  张勇  王政 《地学前缘》2021,28(4):337-348
传统的观点认为山区泥石流灾害的形成主要取决于降水,其产汇流运动的过程是可采用水文过程模拟的物理过程。基于目前泥石流灾害集中分布于地震带和干旱河谷的现象以及现有的泥石流形成与防治研究基础,我们发现在人类居住与活动的山区,其坡度和降水极易满足泥石流灾害的形成条件,因此物源控制着泥石流灾害的孕育、形成和演化,主宰了灾害性泥石流的过程。物源的动态变化改变了泥石流发育的难易程度,主导了泥石流的规模和频率变化。泥石流物源在内外动力作用下经历松散化或密实化两个不同的演化过程,不同密度的土体通过剪缩或剪胀形成不同规模、频率与性质的泥石流。此外物源也控制了泥石流的规模放大过程。实践证明基于物源控制理论的区域预测、分级多指标预警和工程调控技术是科学有效的。因此,灾害性泥石流是一个地质作用主导的地质过程,该过程的特征描述需要更多地考虑基于地质环境条件的经验模型,且高效能的灾害预测预警与调控需要基于物源控制的机理和过程而进行。  相似文献   

19.
Engineered (structural) debris-flow mitigation for all creeks with elements at risk and subject to debris flows is often outside of the financial capability of the regulating government, and heavy task-specific taxation may be politically undesirable. Structural debris-flow mitigation may only be achieved over long (decadal scale) time periods. Where immediate structural mitigation is cost-prohibitive, an interim solution can be identified to manage residual risk. This can be achieved by implementing a debris-flow warning system that enables residents to reduce their personal risk for loss of life through timely evacuation. This paper describes Canada??s first real-time debris-flow warning system which has been operated for 2 years for the District of North Vancouver. The system was developed based on discriminant function analyses of 20 hydrometric input variables consisting of antecedent rainfall and storm rainfall intensities for a total of 63 storms. Of these 27 resulted in shallow landslides and subsequent debris flows, while 36 storms were sampled that did not reportedly result in debris flows. The discriminant function analysis identified as the three most significant variables: the 4-week antecedent rainfall, the 2-day antecedent rainfall, and the 48-h rainfall intensity during the landslide-triggering storm. Discriminant functions were developed and tested for robustness against a nearby rain gauge dataset. The resulting classification functions provide a measure for the likelihood of debris-flow initiation. Several system complexities were added to render the classification functions into a usable and defensible warning system. This involved the addition of various functionality criteria such as not skipping warning levels, providing sufficient warning time before debris flows would occur, and hourly adjustment of actual rainfall vs. predicted rainfall since predicted rainfall is not error-free. After numerous iterations that involved warning threshold and cancelation refinements and further model calibrations, an optimal solution was found that best matches the actual debris-flow data record. Back-calculation of the model??s 21-year record confirmed that 76% of all debris flows would have occurred during warning or severe warning levels. Adding the past 2 years of system operation, this percentage increases marginally to 77%. With respect to the District of North Vancouver boundaries, all debris flows occur during Warning and Severe Warnings emphasizing the validity of the system to the area for which it was intended. To operate the system, real-time rainfall data are obtained from a rain gauge in the District of North Vancouver. Antecedent rainfall is automatically calculated as a sliding time window for the 4-week and 2-day periods every hour. The predicted 48-h storm rainfall data are provided by the Geophysical Disaster Computational Fluid Dynamics Centre at the Earth and Ocean Science Department at the University of British Columbia and is updated every hour as rainfall is recorded during a given storm. The warning system differentiates five different stages: no watch, watch level 1 (the warning level is unlikely to be reached), watch level 2 (the warning level is likely to be reached), warning, and severe warning. The debris-flow warning system has operated from October 1, 2009 to April 30, 2010 and October 1, 2010 and April 30, 2011. Fortunately, we were able to evaluate model performance because the exact times of debris flows during November 2009 and January 2010 were recorded. In both cases, the debris flows did not only occur during the warning level but coincided with peaks in the warning graphs. Furthermore, four debris flows occurred during a warning period in November 2009 in the Metro Vancouver watershed though their exact time of day is unknown. The warning level was reached 13 times, and in four of these cases, debris flows were recorded in the study area. One debris flow was recorded during watch II level. There was no severe warning during the 2 years of operation. The current warning level during the wet season (October to April) is accessible via District of North Vancouver??s homepage (www.dnv.org) and by automated telephone message during the rainy season.  相似文献   

20.
Debris flows belong to sudden disasters which are difficult to forecast. Thus, a detailed and coherent hazard assessment seems a necessary step to prevent or relieve such disasters and mitigate the risk effectively. Previous researchers have proposed several methods, such as regression analysis, fuzzy mathematics, and artificial neural networks for debris-flow hazard assessment. However, these methods need further improvements to eliminate the high relativity existing in their results. The current study reported a similarity-based debris-flow hazard assessment model to determine hazard levels of debris flow in regions, with steps like determining hazard-level-type regions, selecting environmental factors and calculating the similarities between the assessment-pending regions and assessed hazard-level-type ones. This methodology was then employed to assess the regional debris hazard of Yunnan Province in China as a case study and was verified via comparison with field surveys. As the results indicate, the proposed similarity-based debris-flow risk assessment model is simple and efficient and can improve the comparability and reliability of the assessment to some degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号