首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The wedge-shaped deposit formed in front of fault scarp is called colluvial wedge. Repeated faulting by faults may produce multiple colluvial wedges, each of which represents a paleoseismic event. When there are two or more colluvial wedges, the new colluvial wedge is in sedimentary contact with the fault, while the old ones are in fault contact with the fault. The shape of colluvial wedge is usually in the form of horizontal triangle, and the sedimentary facies is usually of binary structure. The overall grain size decreases gradually from bottom to top. Soil layer generally develops on the top, and different types of soil are developed under different climate or soil environments. Another deposit in front of fault scarp is the sag pond graben. The graben in front of sag pond is generally a set of sedimentary assemblages of colluvial facies, alluvial diluvial facies and swamp facies. The area close to the fault, especially the main fault, is of colluvial facies, while the area away from the fault is of alluvial and pluvial facies and marshy facies. In an accumulative cycle, the size of the deposit decreases from bottom to top, and soil layers develop on the top or surface. Multiple pile-ups may be a marker for identifying multiple faulting events. The pile-up strata such as colluvial wedge and fault sag pond can be used as identification markers for paleoseismic events. Colluvial wedge and sag pond, as the identification markers for paleoearthquake, have been well applied to practical research. However, there is still lack of detailed research on the lithological structure and genetic evolution in the interior of colluvial wedge and sag pond sediment, meanwhile, there is still a deficiency in the analysis of the completeness and the regional characteristics of paleoearthquake by using colluvial wedge and sag pond sediment. This paper discusses the method of identifying paleoearthquake by using sag pond sediments and colluvial wedge. We discuss the lithologic combination and sedimentary evolution of sag pond and choose the surface rupture zone of the 1679 M8.0 earthquake on the Xiadian Fault as the research area. In this paper, the distribution range and filling sequence of sag pond are analyzed, using borehole exploration. Four paleoearthquake events are identified since 25ka to 12ka, based on the sag pond sediments and colluvial wedge. The in situ recurrence interval of these seismic events is 480a, 510a, 7 630a and 2 830a, respectively. The lithologic combination and sedimentary evolution law of the sag pond sediments caused by an ancient earthquake are discussed. The sag pond distribution range and filling sequence are determined by the surface elevation survey and drilling exploration. The exploratory trench exposes the sag pond filling strata sequence and lithologic combination. Based on this, we analyze the three sedimentation stages of sag pond sediments formed by a paleoearthquake event near the earthquake fault. It is believed that the filling sequence is composed from bottom to top of the colluvial wedge, the erosion surface or unconformity surface, the fine detrital sediments(containing biological debris)and paleosols. For the fault-sag ponds formed by active faults, the paleoearthquakes occurred near the unconformity or erosion surface of the sediments of the fault-plug ponds. An ancient earthquake event includes the combination of organic deposits such as sediments, clastic deposits, bioclasts, burrow, plant roots and other organic deposits on the vertical scour surface or unconformity. The time interval between two paleoseismic events is defined by two adjacent unconformities(or scour surfaces). According to the vertical facies association and chronological test results of the sediments in the Pangezhuang trough of the Xiatan Fault, four paleo-seismic events are identified since the late Pleistocene period of 25~12ka BP, with recurrence intervals of 480a, 510a, 7 630a and 2 830a, respectively.  相似文献   

2.
Daliangshan fault zone (DFZ) constitutes an indispensable part of Xianshuihe-Xiaojiang fault system which is one of the main large continental strong earthquake faults in China.Puxiong Fault,the east branch of middle segment of DFZ,is the longest secondary fault.Its paleoseismic activity plays an important role in evaluating regional seismic activity level and building countermeasures of preventing and reducing the earthquake damage.The active fault mapping as well as the study of paleoseismological trench in recent years illustrates that Puxiong Fault is a slightly west-dipping high-angle left-lateral strike-slip fault with strong activity since late Pleistocene.Two trenches excavated across this fault reveal 2 and 3 paleoearthquakes that ruptured the fault at 8206 BC-1172 AD,1084-1549 AD,and 17434-7557 BC,1577-959 BC and 927-1360 AD,respectively.The OxCal model combining the results from both trenches and the another one in previous study across the fault with the historical earthquake record yields the elapsed time of~0.7ka of the latest paleoearthquake event,and the interval time is~2.3ka between the last two events.In the model,the penultimate event is considered to be recorded in all trenches.As all the three trenches are located at north part of the Puxiong Fault whose strike is apparently different from the south part,the~57km long north secondary segment is supposed to be the seismogenic structure of the paleoearthquake.According to the empirical scaling laws between magnitude and rupture length,the magnitude of the surface ruptured paleoearthquake is estimated to be more than M7 with the coseismic displacement~3.5m.However,the difference between the time of the paleoearthquake events on the middle and south segments of DFZ illustrates their independence as earthquake fracture units,and furthermore,the lower connectivity and the new generation of DFZ.  相似文献   

3.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

4.
The Langshan range-front fault (LRF)is a Holocene active normal fault that bounds the Langshan Mountain and Hetao Basin at the northwest corner of the Ordos Plateau. Paleoseismic trenching research at three sites, Dongshen Village trench (TC1), Qingshan trench (TC2)and Wulanhashao trench (TC3)from north to south was performed in this study to reveal the seismic hazard risk in Hetao Basin. The paleoevents ED1, ED2, ED3 from TC1 can be constrained to have occurred (6±1.3)ka, (9.6±2)ka and (19.7±4.2)ka respectively, while the paleoevent EQ1 from TC2 occurred about (6.7±0.1)ka and the paleoevents EW1, EW2, EW3 at TC3 took place about (2.3±0.4)ka, (6±1)ka and before 7ka respectively. In combination with paleoseismic results of previous researchers, the Holocene earthquake sequence of the LRF could be established as 2.3~2.43ka BP (E1), 4.41~3.06ka BP (E2), 6.71~6.8ka BP (E3), 7.6~9.81ka BP (E4), and (19.7±4.2)ka BP (E5). Although the possibility of missing events cannot totally be ruled out, based on the analysis on faulted geomorphology at Wulanhashao site, we argue the paleoearthquake history of the LRF during Holocene may be complete with an average recurrent interval about 2500 yrs. The apparent displacements associated with events E1, E3 and E4 are significantly larger than that of event, E2, that suggests that they might be great events with magnitudes 7.5 to even over 8 that ruptured the entire LRF, while the event E2 may be a smaller event that only ruptured a segment of the fault. The magnitude of event E2 might be about M7. This poses a significant seismic hazard to the area of the Linhe depression in the western Hetao graben region. With the further limitation of previous radiocarbon dating result near our trench site at Wulanhashao, the slip rate at Wulanhashao should be not smaller than, but close to 0.66mm/a since 15ka BP. And the slip rate at Qingshan site is supposed to be about 1.4~1.6mm/a since 6.8ka BP. Both our combined most recent paleoseismic cognition and current tectonic geomorphologic research results supports to reveal that the Langshan range-front fault now is an unsegmented fault, preferring to rupture the whole fault in a surface-rupture event. Considering the most recent event E1 and fault slip rate obtained above, the accumulated strain on the LRF could be estimated as about 1.52~3.94m. Given the ~2500a recurrent interval, we argue that the elapsed time since last major quake, E1, is approaching or even over the recurrence, and the seismic risk for another major quake is imminent, at least cannot be ignored.  相似文献   

5.
The Nankou-Sunhe Fault is a buried active normal fault that traverses the urban area of Beijing.Its seismic risks have caused considerable concerns.This paper studies paleoearthquakes along this fault by analyzing and correlating bore-hole cores obtained from triple-tube coring,incorporating experience acquired from trenching.As a result,a model for identifying earthquake-derived colluvium by sediment-core analysis is proposed.Triple-tube coring technique is useful to collect continuous undis-turbed soil core near the Nankou-Sunhe Fault.By identifying fault-scarp colluviums,determining cumulative displacement,and analysing stratum thickening on the hanging wall,we are able to establish a preliminary paleoearthquake sequence consisting of 13 surface-rupturing events since 60 ka.The seismic history can be divided into three periods based on different recurrence intervals.Between 60 and 40 ka,three earthquakes occurred with recurrence interval of ~10 ka.From 40 to 25 ka,there were six earthquakes with the recurrence interval of about 2.5 ka.In the last 25 ka,four earthquakes have taken place with the recurrence interval varying considerably.The recurrence interval between the last three events is ~5 ka.Smaller recurrence intervals correspond to stages of faster fault slip.The coseismic displacement of a single event is 0.8 to 2.2 m,average 1.4 m,largely equivalent to moment magnitudes 6.7-7.1.This study demonstrates the feasibility of bore-hole drilling in investigating paleoearthquakes along normal faults.It also suggests that closely spaced boreholes with continuous undisturbed cores are essential for reconstructing the complete paleoearthquake sequence.  相似文献   

6.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

7.
The time-dependent probabilistic seismic hazard assessment of the active faults based on the quantitative study of seismo-geology has the vital practical significance for the earthquake prevention and disaster management because it describes the seismic risk of active faults by the probability of an earthquake that increases with time and the predicted magnitude. The Poisson model used in the traditional probabilistic method contradicts with the activity characteristics of the fault, so it cannot be used directly to the potential earthquake risk evaluation of the active fault where the time elapsing from the last great earthquake is relatively short. That is to say, the present Poisson model might overestimate the potential earthquake risk of the Xiadian active fault zone in North China because the elapsed time after the historical M8 earthquake that occurred in 1679 is only 341a. Thus, based on paleoearthquake study and geomorphology survey in the field, as well as integrating the data provided by the previous scientists, this paper reveals two paleo-events occurring on the Xiadian active fault zone. The first event E1 occurred in 1679 with magnitude M8 and ruptured the surface from Sanhe City of Hebei Province to Pinggu District of Beijing at about 341a BP, and the other happened in (4.89±0.68)ka BP(E2). Our research also found that the average co-seismic displacement is ~(1.4±0.1)m, and the predicted maximum magnitude of the potential earthquake is 8.0. In addition, the probabilistic seismic hazard analysis of great earthquakes for Xiadian active fault zone in the forthcoming 30a is performed based on Poisson model, Brownian time passage model(BPT), stochastic characteristic-slip model(SCS)and NB model to describe time-dependent features of the fault rupture source and its characteristic behavior. The research shows that the probability of strong earthquake in the forthcoming 30a along the Xiadian active fault zone is lower than previously thought, and the seismic hazard level estimated by Poisson model might be overestimated. This result is also helpful for the scientific earthquake potential estimation and earthquake disaster protection of the Xiadian active fault zone, and for the discussion on how to better apply the time-dependent probabilistic methods to the earthquake potential evaluation of active faults in eastern China.  相似文献   

8.
柯坪推覆构造的根部断裂记录到的地震活动相对较弱,以至于多数学者认为该断裂晚第四纪以来活动性不强。笔者根据遥感影像解译和野外调查得到迈丹断裂的几何展布,确认F3阿合奇段为最新地表破裂带,并通过一系列河流阶地的左旋位移测量确定其晚更新世以来有过走滑活动。结合地貌测量和探槽开挖得到断层垂直错距,探槽揭示的古地震事件发生在距今(1.76±0.22)ka之后,根据现场考察获得的活动构造定量数据,依据不同震级与地表破裂关系式推算出该次古地震震级为7.5级。研究成果可能对区域活动断裂的研究以及区域活动构造图像的完整性提供基础资料,同时最新地表破裂证据的发现可能有助于更新认识该断裂的危险性。  相似文献   

9.
天山北麓活动背斜区河流阶地与古地震事件   总被引:2,自引:2,他引:2       下载免费PDF全文
利用航空遥感照片和Google earth卫星影像,对天山北麓独山子活动背斜区奎屯河两侧的河流地貌进行解释,结合野外调查发现,奎屯河流经独山子背斜段发育7级基座阶地,阶地基座为上新统独山子组泥岩,其上部为2.5 ~ 15m厚的砂砾石层和砂质黏土.在开挖或剥离的各级阶地堆积物剖面中采集细粒堆积物样品,实验室中采用细粒石英...  相似文献   

10.
在青藏高原东北缘海原断裂带刺儿沟古地震剖面上不仅保存了地震活动的崩积楔遗迹,还发现多层炭屑以及与人类活动有关的铁渣、陶片等遗物,文中运用14C测年法和经红外释光照射后的绿光释光测年法(Post-IR OSL)分别对剖面上的炭屑、烘烤黏土、沉积物等样品进行年龄测定和比对,获得了各炭屑层和人类活动遗迹的年代。测定的人类活动遗迹年代与海原周缘历史记载的强震发生时间序列比对结果表明,刺儿沟人类活动遗迹的形成可能与历史地震无关,过去以炭屑年代作为地层年代来限定古地震发生的时代,建立的古地震事件时序的结果可能不正确,上述工作为进一步研究海原断裂带的强震复发规律和海原地区考古提供了重要的基础资料  相似文献   

11.
Paleoseismological studies have shown that indi-vidual past large-magnitude earthquakes can be recog-nized in the geological record and the timing betweenevents can be measured through Quaternary datingtechniques[1—6]. Thus, through paleoseismological st-udies, it is possible to determine age of each prehis-toric event so that recurrence intervals of large earth-quakes may be evaluated which provides a means toexpand the limited view of earthquakes offered by thehistorical and instrumental re…  相似文献   

12.
酒西盆地白杨河断裂古地震特征研究   总被引:3,自引:2,他引:1       下载免费PDF全文
白杨河断裂是酒西盆地内部一条重要的活动断裂,断裂长约25 km,整体走向近EW,倾向N,倾角约25°。以往的研究认为白杨河断裂为一条全新世活动的隐伏断裂,其持续的活动造成了上覆阶地变形,形成白杨河背斜。通过卫星影像解译和野外实地考察,在断裂西段和中段发现连续发育的低断层陡坎,表明断裂活动已至地表。古地震探槽揭露白杨河断裂全新世以来至少发生过2次地震事件,年代分别为距今(8.7±0.6)ka和(3.9±0.5)ka,每次地震事件的垂直断距都在约0.6 m,利用经验公式,估算震级约为6.8级。  相似文献   

13.
在全面收集和总结前人工作资料的基础上,采用野外地震地质学研究方法,结合浅层地震勘探、断层气测量、开挖探槽、年代测样等丰富的第一手资料,综合分析总结了青海省格尔木市温泉水库近场区内活动断裂的特征及其古地震形变遗迹。特别是对穿越坝体的京昆仑活动断裂进行了更为详细的研究,总结出它是全新世以来经过多期强烈活动,水平位移达40~80m,平滑速率为7.5~9.5mm/a,是古地震遗迹十分状观的一条岩石围深大断裂。  相似文献   

14.
The Gudian Fault in the southwest of Songyuan is an important fault in the central depression of the Songliao Basin. It was recognized from the petroleum exploration data. Based on the data, we conducted shallow seismic exploration, drilling exploration, age determination(OSL) and topography measurement. The fault features and its motion characteristics are analyzed with the results of shallow seismic exploration. With stratigraphic correlation and optical stimulated luminescence dating, the latest active age of the fault is determined. The surface relief of the region to the southeast of the drilling site is relatively larger than surrounding places. An 800m long section across the fault was measured by GPSRTK, and the deformation amount across the zone was calculated. Four conclusions are drawn in this paper:(1) The Gudian Fault is arcuate in shape and shows a property of inverse fault with a length of about 66km in the reflection interface T1(bottom of the upper Cretaceous Nenjiang Group). (2) The middle part of the fault rupture is wider than the ends, narrowing or dying out outwards. According to this feature and the rupture of the bottom of the fourth segment of the upper Cretaceous Nenjiang Group, the fault can be divided into three segments, e.g. Daliba Village-Gaizijing-Guyang segment, Guyang-Shenjingzi-Julongshan Village segment and Julongshan Village-Caiyuanzi segment. (3) The yellow silt layer at the base of the upper Pleistocene series ((33.66±3.27) ka BP~50ka BP) is offset by the Gudian Fault, while the upper tawny silt layer is not influenced by the fault. Thus, the fault belongs to late Pleistocene active fault. (4) The amount of geomorphic deformation around Shenjingzi is 9m. The depth of the bottom of the upper Pleistocene series is 11m and the Huangshan Group of the mid Pleistocene series exposes to the southeast of the deformation zone. Therefore, the throw of the bottom of the upper Pleistocene series is about 20m at the sides of the deformation zone. In addition, the Qianguo M6(3/4) earthquake occurred in Songyuan area in 1119 AD. Though some studies have been done, arguments still exist on the seismogenic structure of the Qianguo M6(3/4) earthquake. Combined with others studies, Gudian Fault is considered as the seismogenic structure of the Qianguo M6(3/4) earthquake.  相似文献   

15.
以福州市活断层信息管理系统为例,提出了城市活断层探测信息系统建设的目标,分析了以GIS技术为支持的、面向对象的设计方法及系统结构与功能。系统在局域网内采用C/S模式,在广域网中采用B/S模式,具有用户界面、应用程序和基础数据的3层结构。探测成果数据库按照分类、分层存贮,按专题组织查询的方式管理。城市活断层探测信息管理系统以活断层探测成果数据库为基础,空间分析为支撑,集地质、地球物理、地球化学、综合查询及专题分析应用为一体,具备活断层探测及分析研究成果分类与综合查询、展示、分析等功能,这一系统的建立可为活断层研究的定量化提供坚实的数据基础与技术平台,为城市规划、土地利用等防震减灾工作的开展提供科学依据  相似文献   

16.
Introduction Haiyuan fault is a major seismogenic fault in north-central China. One of the most devastat-ing great earthquake in the 20th century occurred near Haiyuan in northwestern China on Decem-ber 16, 1920. More than 220 000 people were killed and thousands of towns and villages weredestroyed during the devastating earthquake. A 230 km long left-lateral surface rupture zone wasformed along the Haiyuan fault during the earthquake with maximum left-lateral displacement of10 m. Pale…  相似文献   

17.
Hexi Corridor is located at the northeastern margin of the Tibetan plateau. Series of late Quaternary active faults are developed in this area. Numerous strong earthquakes occurred in history and nowadays. Jinta Nanshan fault is one of the boundary faults between the Qinghai-Tibet block and the Alxa block. The fault starts from the northwest of Wutongdun in the west, passes through Changshan, Yuanyangchi reservoir, Dakouzi, and ends in the east of Hongdun. Because the Jinta Nanshan fault is a new active fault in this region, it is important to ascertain its paleoearthquakes since late Pleistocene for the earthquake risk study. Previous studies were carried out on the western part, such as field geomorphic investigation and trench excavation, which shows strong activity in Holocene on the western segment of Jinta Nanshan fault. On the basis of the above research, in this paper, we carried out satellite image interpretation, detailed investigation of faulted landforms and differential GPS survey for the whole fault. Focusing on the middle-eastern part, we studied paleoearthquakes through trench exploration on the Holocene alluvial fan and optical luminescence dating. The main results are as follows:Early Pleistocene to late Pleistocene alluvial strata are widely developed along the fault and Holocene sediment is only about tens of centimeters thick. The Jinta Nanshan fault shows long-lasting activity since late Quaternary and reveals tens of centimeters of the lowest scarp which illustrates new strong activity on the middle-east segment of this fault. Since late Pleistocene, 4 paleoearthquakes happened respectively before(15.16±1.29) ka, before(9.9±0.5) ka, about 6ka and after(3.5±0.4) ka, revealed by 4 trenches, of which 2 are laid on relatively thicker Holocene alluvial fan. Two events occurred since middle Holocene, and both ruptured the whole fault.  相似文献   

18.
On the basis of the textual research on the historical earthquake data and the field investigation of Wudu earth- quake occurred in 186 B.C., we suggest that the earthquake parameters drawn from the present earthquake catalogs are not definite and amendments should be made. The heavily-damaged area of this earthquake should be located between Jugan township of Wudu County and Pingding township of Zhouqu County. Its epicenter should be in the vicinity of Lianghekou in Wudu County with a magnitude of about 7~7 41 and an intensity of about IX~X. The major axis direction of the heavily-damaged area should be in the WNW direction that is approximately consistent with the strike of the middle-east segment of Diebu-Bailongjiang active fault zone, and the origin time should match up to that of the latest paleoearthquake event [before (83±46) B.C.] obtained by the trench investigation. Certain seismic rupture evidences are still preserved on this fault segment. Therefore, we propose on the basis of comprehensive analysis that the causative structure of the M 7~7 4/1 Wudu earthquake in 186 B.C. should be in the middle-east segment of Diebu-Bailongjiang active fault zone.  相似文献   

19.
利用地震剖面研究夏垫断裂西南段的活动性   总被引:5,自引:1,他引:4  
地震方法是针对厚覆盖区城市直下型活动断裂的一种不可替代的探测技术,对于不同的探测深度需采用不同的排列长度。为研究夏垫断裂在远离三河-平谷8.0级地震震源区的活动性,我们在该震源区SW方向约30km处开展了中浅层反射地震探测试验,并跨过中浅层地震探测到的夏垫断裂进行了浅层反射地震探测试验。浅层和中浅层地震探测的试验结果表明,在5m道间距的地震剖面上,在200m深度以下夏垫断裂得到了较好的反映,在该深度以上,该断裂反映不明显;在2m道间距的地震剖面上,夏垫断裂错断明显,但剖面上的最浅一组反射波(深度约30m)却没有发生明显错断。由此得出:距1679年三河-平谷8.0级地震震源位置SW方向约30km处,夏垫断裂的活动性减弱  相似文献   

20.
河西走廊西端酒西盆地古地震研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
酒西盆地位于祁连山北缘、河西走廊西端,是一个被活动断裂围限的新生代压陷性盆地,盆地周缘及内部发育多条活动断裂.通过对前人古地震资料的总结分析和野外补充调查,发现酒西盆地断裂古地震大多符合特征地震模式,复发周期约为3~5 ka,根据经验公式推断,每次地震的震级约为6.8~7.2级.从区域古地震角度看,酒西盆地地震的发生具...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号