首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.

Background

United States forests can contribute to national strategies for greenhouse gas reductions. The objective of this work was to evaluate forest sector climate change mitigation scenarios from 2018 to 2050 by applying a systems-based approach that accounts for net emissions across four interdependent components: (1) forest ecosystem, (2) land-use change, (3) harvested wood products, and (4) substitution benefits from using wood products and bioenergy. We assessed a range of land management and harvested wood product scenarios for two case studies in the U.S: coastal South Carolina and Northern Wisconsin. We integrated forest inventory and remotely-sensed disturbance data within a modelling framework consisting of a growth-and-yield driven ecosystem carbon model; a harvested wood products model that estimates emissions from commodity production, use and post-consumer treatment; and displacement factors to estimate avoided fossil fuel emissions. We estimated biophysical mitigation potential by comparing net emissions from land management and harvested wood products scenarios with a baseline (‘business as usual’) scenario.

Results

Baseline scenario results showed that the strength of the ecosystem carbon sink has been decreasing in the two sites due to age-related productivity declines and deforestation. Mitigation activities have the potential to lessen or delay the further reduction in the carbon sink. Results of the mitigation analysis indicated that scenarios reducing net forest area loss were most effective in South Carolina, while extending harvest rotations and increasing longer-lived wood products were most effective in Wisconsin. Scenarios aimed at increasing bioenergy use either increased or reduced net emissions within the 32-year analysis timeframe.

Conclusions

It is critical to apply a systems approach to comprehensively assess net emissions from forest sector climate change mitigation scenarios. Although some scenarios produced a benefit by displacing emissions from fossil fuel energy or by substituting wood products for other materials, these benefits can be outweighed by increased carbon emissions in the forest or product systems. Maintaining forests as forests, extending rotations, and shifting commodities to longer-lived products had the strongest mitigation benefits over several decades. Carbon cycle impacts of bioenergy depend on timeframe, feedstocks, and alternative uses of biomass, and cannot be assumed carbon neutral.
  相似文献   

2.

Background

A large proportion of the world’s tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia’s climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks.

Results

Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia’s total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia’s peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62–71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are <300 cm thick and thus vulnerable to conversion outside of protected areas according to environmental regulations. The carbon contained in these shallower peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia’s total peat carbon and about 12 years of global emissions from land use change at current rates.

Conclusions

Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia’s peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and greatly benefit carbon cycle research, land use management and spatial planning.
  相似文献   

3.

Background

Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.

Results

The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78?±?27.06, 104.83?±?12.35, 108.77?±?6.77, 76.54?±?7.84 and 83.11?±?8.53 MgC ha?1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.

Conclusions

The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
  相似文献   

4.

Background

Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071–2100 is predicted to be 1–5.5 °C higher than that for 1971–2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change.

Results

Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO2. The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C.

Conclusions

This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance. The simulated productivity increase in response to future global change enables an intensification of grassland management over Europe. However, the simulated increase in the interannual variability of grassland productivity over some regions may reduce the farmers’ ability to take advantage of the increased long-term mean productivity in the face of more frequent, and more severe drops of productivity in the future.
  相似文献   

5.

Background

To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period.

Results

Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha?1 year?1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha?1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha?1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha?1.

Conclusions

Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term implications for C storage in inland aquatic systems. This is a first step integrating fluvial transport of C into a forest carbon model by parameterizing DOC flux from soil C pools. While deforestation related to successive reservoir expansions did impact the watershed-scale C budget, over multi-decadal time periods, sustained harvest activity was more influential.
  相似文献   

6.

Background

The environmental costs of fossil fuel consumption are globally recognized, opening many pathways for the development of regional portfolio solutions for sustainable replacement fuel and energy options. The purpose of this study was to create a baseline carbon (C) budget of a conventionally managed sugarcane (Saccharum officinarum) production system on Maui, Hawaii, and compare it to three different future energy cropping scenarios: (1) conventional sugarcane with a 50% deficit irrigation (sugarcane 50%), (2) ratoon harvested napiergrass (Pennisetum purpureum Schumach.) with 100% irrigation (napier 100%), and (3) ratoon harvested napiergrass with a 50% deficit irrigation (napier 50%).

Results

The differences among cropping scenarios for the fossil fuel-based emissions associated with agricultural inputs and field operations were small compared to the differences associated with pre-harvest burn emissions and soil C stock under ratoon harvest and zero-tillage management. Burn emissions were nearly 2000 kg Ceq ha?1 year?1 in the conventional sugarcane; whereas soil C gains were approximately 4500 kg Ceq ha?1 year?1 in the surface layer of the soil profile for napiergrass. Further, gains in deep soil profile C were nearly three times greater than in the surface layer. Therefore, net global warming potential was greatest for conventional sugarcane and least for napier 50% when deep profile soil C was included. Per unit of biomass yield, the most greenhouse gas (GHG) intensive scenario was sugarcane 50% with a GHG Index (GHGI, positive values imply a climate impact, so a more negative value is preferable for climate change mitigation) of 0.11 and the least intensive was napiergrass 50% when a deep soil profile was included (GHGI?=???0.77).

Conclusion

Future scenarios for energy or fuel production on former sugarcane land across the Pacific Basin or other volcanic islands should concentrate on ratoon-harvested crops that maintain yields under zero-tillage management for long intervals between kill harvest and reduce costs of field operations and agricultural input requirements. For napiergrass on Maui and elsewhere, deficit irrigation maximized climate change mitigation of the system and reduced water use should be part of planning a sustainable, diversified agricultural landscape.
  相似文献   

7.

Background

There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill.

Results

Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4 g?1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed.

Conclusions

The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.
  相似文献   

8.

Background

Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.

Results

Total vine C was estimated at 12.3 Mg C ha?1, of which 8.9 Mg C ha?1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha?1 from leaves and canes and 1.7 Mg C ha?1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).

Conclusions

Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.
  相似文献   

9.

Background

A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades.

Results

Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas.

Conclusions

Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.  相似文献   

10.

Background

Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine.

Results

Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution.

Conclusions

Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help distinguish livestock methane emissions from those of other sectors in future top-down studies. The revised estimates allow improved reconciliation of top-down and bottom-up estimates of methane emissions, will facilitate the development and evaluation of Earth system models, and provide consistent regional and global Tier 1 estimates for environmental assessments.
  相似文献   

11.

Background

Pasture enclosures play an important role in rehabilitating the degraded soils and vegetation, and may also influence the emission of key greenhouse gasses (GHGs) from the soil. However, no study in East Africa and in Kenya has conducted direct measurements of GHG fluxes following the restoration of degraded communal grazing lands through the establishment of pasture enclosures. A field experiment was conducted in northwestern Kenya to measure the emission of CO2, CH4 and N2O from soil under two pasture restoration systems; grazing dominated enclosure (GDE) and contractual grazing enclosure (CGE), and in the adjacent open grazing rangeland (OGR) as control. Herbaceous vegetation cover, biomass production, and surface (0–10 cm) soil organic carbon (SOC) were also assessed to determine their relationship with the GHG flux rate.

Results

Vegetation cover was higher enclosure systems and ranged from 20.7% in OGR to 40.2% in GDE while aboveground biomass increased from 72.0 kg DM ha?1 in OGR to 483.1 and 560.4 kg DM ha?1 in CGE and GDE respectively. The SOC concentration in GDE and CGE increased by an average of 27% relative to OGR and ranged between 4.4 g kg?1 and 6.6 g kg?1. The mean emission rates across the grazing systems were 18.6 μg N m?2 h?1, 50.1 μg C m?2 h?1 and 199.7 mg C m?2 h?1 for N2O, CH4, and CO2, respectively. Soil CO2 emission was considerably higher in GDE and CGE systems than in OGR (P?<?0.001). However, non-significantly higher CH4 and N2O emissions were observed in GDE and CGE compared to OGR (P?=?0.33 and 0.53 for CH4 and N2O, respectively). Soil moisture exhibited a significant positive relationship with CO2, CH4, and N2O, implying that it is the key factor influencing the flux rate of GHGs in the area.

Conclusions

The results demonstrated that the establishment of enclosures in tropical rangelands is a valuable intervention for improving pasture production and restoration of surface soil properties. However, a long-term study is required to evaluate the patterns in annual CO2, N2O, CH4 fluxes from soils and determine the ecosystem carbon balance across the pastoral landscape.
  相似文献   

12.

Background

Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

Results

This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year?1 and subsequently caused a carbon loss of approximately 9 million Mg C year?1, which is equal to emissions of 33 million Mg CO2 year?1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha?1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

Conclusion

The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+?implementation in Malaysia.
  相似文献   

13.

Background

Peatlands are an important component of Canada’s landscape, however there is little information on their national-scale net emissions of carbon dioxide [Net Ecosystem Exchange (NEE)] and methane (CH4). This study compiled results for peatland NEE and CH4 emissions from chamber and eddy covariance studies across Canada. The data were summarized by bog, poor fen and rich-intermediate fen categories for the seven major peatland containing terrestrial ecozones (Atlantic Maritime, Mixedwood Plains, Boreal Shield, Boreal Plains, Hudson Plains, Taiga Shield, Taiga Plains) that comprise >?96% of all peatlands nationally. Reports of multiple years of data from a single site were averaged and different microforms (e.g., hummock or hollow) within these peatland types were kept separate. A new peatlands map was created from forest composition and structure information that distinguishes bog from rich and poor fen. National Forest Inventory k-NN forest structure maps, bioclimatic variables (mean diurnal range and seasonality of temperatures) and ground surface slope were used to construct the new map. The Earth Observation for Sustainable Development map of wetlands was used to identify open peatlands with minor tree cover.

Results

The new map was combined with averages of observed NEE and CH4 emissions to estimate a growing season integrated NEE (±?SE) at ??108.8 (±?41.3) Mt CO2 season?1 and CH4 emission at 4.1 (±?1.5) Mt CH4 season?1 for the seven ecozones. Converting CH4 to CO2 equivalent (CO2e; Global Warming Potential of 25 over 100 years) resulted in a total net sink of ??7.0 (±?77.6) Mt CO2e season?1 for Canada. Boreal Plains peatlands contributed most to the NEE sink due to high CO2 uptake rates and large peatland areas, while Boreal Shield peatlands contributed most to CH4 emissions due to moderate emission rates and large peatland areas. Assuming a winter CO2 emission of 0.9 g CO2 m?2 day?1 creates an annual CO2 source (24.2 Mt CO2 year?1) and assuming a winter CH4 emission of 7 mg CH4 m?2 day?1 inflates the total net source to 151.8 Mt CO2e year?1.

Conclusions

This analysis improves upon previous basic, aspatial estimates and discusses the potential sources of the high uncertainty in spatially integrated fluxes, indicating a need for continued monitoring and refined maps of peatland distribution for national carbon and greenhouse gas flux estimation.
  相似文献   

14.

Background

Forests and forest products can significantly contribute to climate change mitigation by stabilizing and even potentially decreasing the concentration of carbon dioxide (CO2) in the atmosphere. Harvested wood products (HWP) represent a common widespread and cost-efficient opportunity for negative emissions. After harvest, a significant fraction of the wood remains stored in HWPs for a period that can vary from some months to many decades, whereas atmospheric carbon (C) is immediately sequestered by vegetation re-growth. This temporal mismatch between oxidation of HWPs and C uptake by vegetation generates a net sink that lasts over time. The role of temporary carbon storage in forest products has been analysed and debated in the scientific literature, but detailed bottom-up studies mapping the fate of harvested materials and quantifying the associated emission profiles at national scales are rare. In this work, we quantify the net CO2 emissions and the temporary carbon storage in forest products in Norway, Sweden and Finland for the period 1960–2015, and investigate their correlation. We use a Chi square probability distribution to model the oxidation rate of C over time in HWPs, taking into consideration specific half-lives of each category of products. We model the forest regrowth and estimate the time-distributed C removal. We also integrate the specific HWP flows with an emission inventory database to quantify the associated life-cycle emissions of fossil CO2, CH4 and N2O.

Results

We find that assuming an instantaneous oxidation of HWPs would overestimate emissions of about 1.18 billion t CO2 (cumulative values for the three countries over the period 1960–2015).We also find that about 40 years after 1960, the starting year of our analysis, are sufficient to detect signs of negative emissions. The total amount of net CO2 emissions achieved in 2015 are about ??3.8 million t CO2, ??27.9 t CO2 and ??43.6 t CO2 in Norway, Sweden, and Finland, respectively.

Conclusion

We argue for a more explicit accounting of the actual emission rates from HWPs in carbon balance studies and climate impact analysis of forestry systems and products, and a more transparent inclusion of the potential of HWP as negative emissions in perspective studies and scenarios. Simply assuming that all harvested carbon is instantaneously oxidized can lead to large biases and ultimately overlook the benefits of negative emissions of HWPs.
  相似文献   

15.

Background

We analyzed the dynamics of carbon (C) stocks and CO2 removals by Brazilian forest plantations over the period 1990–2016. Data on the extent of forests compiled from various sources were used in the calculations. Productivities were simulated using species-specific growth and yield simulators for the main trees species planted in the country. Biomass expansion factors, root-to-shoot ratios, wood densities, and carbon fractions compiled from literature were applied. C stocks in necromass (deadwood and litter) and harvested wood products (HWP) were also included in the calculations.

Results

Plantation forests stocked 231 Mt C in 1990 increasing to 612 Mt C in 2016 due to an increase in plantation area and higher productivity of the stands during the 26-year period. Eucalyptus contributed 58% of the C stock in 1990 and 71% in 2016 due to a remarkable increase in plantation area and productivity. Pinus reduced its proportion of the carbon storage due to its low growth in area, while the other species shared less than 6% of the C stocks during the period of study. Aboveground biomass, belowground biomass and necromass shared 71, 12, and 5% of the total C stocked in plantations in 2016, respectively. HWP stocked 76 Mt C in the period, which represents 12% of the total C stocked. Carbon dioxide removals by Brazilian forest plantations during the 26-year period totaled 1669 Gt CO2-e.

Conclusions

The carbon dioxide removed by Brazilian forest plantations over the 26 years represent almost the totality of the country´s emissions from the waste sector within the same period, or from the agriculture, forestry and other land use sector in 2016. We concluded that forest plantations play an important role in mitigating GHG (greenhouse gases) emissions in Brazil. This study is helpful to improve national reporting on plantation forests and their GHG sequestration potential, and to achieve Brazil’s Nationally Determined Contribution and the Paris Agreement.
  相似文献   

16.

Background

Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB.

Results

Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤?25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB.

Conclusion

Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
  相似文献   

17.

Background

Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar.

Results

We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR.

Conclusions

High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy.  相似文献   

18.

Background

Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.

Results

Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.

Conclusions

This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.
  相似文献   

19.

Background

Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.

Methods

The destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results

The best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291?±?141 Mg ha?1 (mean?±?95% confidence level). The mean wood basic density of sampled trees was 0.715?±?0.182 g cm?3. The average BEF was of 2.05?±?0.15 and the estimated mean AGB of 387?±?126 Mg ha?1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.

Conclusion

The BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
  相似文献   

20.

Background

Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i) develop short-term emissions factors (per area) for logging and fire degradation scenarios in tropical forests; and (ii) describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance.

Results

Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years) effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown.

Conclusions

This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号