首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stratigraphic, subsidence and structural history of Orphan Basin, offshore the island of Newfoundland, Canada, is described from well data and tied to a regional seismic grid. This large (400 by 400 km) rifted basin is part of the non‐volcanic rifted margin in the northwest Atlantic Ocean, which had a long and complex rift history spanning Middle Jurassic to Aptian time. The basin is underlain by variably thinned continental crust, locally <10‐km thick. Our work highlights the complex structure, with major upper crustal faults terminating in the mid‐crust, while lower crustal reflectivity suggests ductile flow, perhaps accommodating depth‐dependent extension. We describe three major stratigraphic horizons connected to breakup and the early post‐rift. An Aptian–Albian unconformity appears to mark the end of crustal rifting in the basin, and a second, more subdued Santonian unconformity was also noted atop basement highs and along the proximal margins of the basin. Only minor thermal subsidence occurred between development of these two horizons. The main phase of post‐rift subsidence was delayed until post‐Santonian time, with rapid subsidence culminating in the development of a major flooding surface in base Tertiary time. Conventional models of rifting events predict significant basin thermal subsidence immediately following continental lithospheric breakup. In the Orphan Basin, however, this subsidence was delayed for about 25–30 Myr and requires more thinning of the mantle lithosphere than the crust. Models of the subsidence history suggest that extreme thinning of the lithospheric mantle continued well into the post‐rift period. This is consistent with edge‐driven, small‐scale convective flow in the mantle, which may thin the lithosphere from below. A hot spot may also have been present below the region in Aptian–Albian time.  相似文献   

2.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

3.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

4.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

5.
The nature of the Lower Crustal Body (LCB) underneath the western part of the Vøring margin (NE Atlantic) is studied with three scenarios of its extension history: (a) The LCB is Caledonian crust. (b) Half the LCB is Caledonian crust and the other half is emplaced as magmatic underplating in Late Palaeocene. (c) The entire LCB is emplaced as magmatic underplating. The extension of the margin transect is obtained with a procedure that accounts for the extension and thinning of the sedimentary basins. This procedure has been extended to include magmatic underplating. The lithosphere is modelled with deposition of sediments and four rift phases since the Early Devonian until today. The forward modelling is mass conservative and the present‐day thicknesses of the formations, crust, LCB and magmatic underplate are reproduced. The state of the lithosphere and the sedimentary basins are shown and compared at the beginning and at the end of the rift phases. It is concluded that the scenario with the LCB as only underplating requires an unrealistic amount of extension. A scenario where underplating accounts for maximum half the LCB is more likely. Two different interpretations for the Moho underneath the Utgard High are tested: one with a shallow base‐crust and another with a deeper and flatter base‐crust. Tectonic modelling of the two versions favours the latter interpretation. The modelling shows that the Late Jurassic rift phase was much more prominent than the Late Cretaceous and Palaeocene rift phase for all cases of underplating. A strong Late Jurassic rift phase is consistent with the accumulation space needed for the thick Cretaceous formations. There are no observations of magmatism from the Late Jurassic, although this rift phase is stronger than the Cretaceous and Palaeocene rift phase.  相似文献   

6.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

7.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

8.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

9.
The attenuation of the continental crust during rifting and the subsequent filling of the rift‐related accommodation alter the long‐term thermal and mechanical state of the lithosphere. This is primarily because the Moho is shallowed due to density contrasts between the sediment fill and the crust, but also reflects the attenuation of the pre‐existing crustal heat production and its burial beneath the basin, as well the thermal properties of the basin fill. Moho shallowing and attenuation of pre‐existing heat production contribute to long‐term cooling of the Moho and thus lithospheric strengthening, as has been pointed out in many previous studies. In contrast, basin filling normally contributes to significant Moho heating allowing the possibility of long‐term lithospheric weakening, the magnitude of which is dependent on the thermal properties of the basin‐fill and the distribution of heat sources in the crust. This paper focuses on the thermal property structure of the crust and basin‐fill in effecting long‐term changes in lithospheric thermal regime, with particular emphasis on the distribution of heat producing elements in the crust. The parameter space appropriate to typical continental crust is explored using a formalism for the heat production distributions that makes no priori assumptions about the specific form of the distribution. The plausible parameter space allows a wide range in potential long‐term thermal responses. However, with the proviso that the accommodation created by the isostatic response to rifting is essentially filled, the long‐term thermal response to rift basin formation will generally increase average crustal thermal gradients beneath basins but cool the Moho due to its reduction in depth. The increase in the average crustal thermal gradient induces lateral heat flow that necessarily heats the Moho along basin margins, especially in narrow rift basins. Using coupled thermo‐mechanical models with temperature sensitive creep‐parameters, we show that such heating may be sufficient to localise subsequent deformation in the vicinity of major basin bounding structures, potentially explaining the offset observed in some stacked rift basin successions.  相似文献   

10.
We present tectonic models of progressive basin formation in the south‐west Barents Sea derived as part of the PETROBAR project (Petroleum‐related studies of the Barents Sea region). The basin architecture developed as a multi‐stage rift preceding the creation of the sheared/transtensional margin conjugate to NE Greenland. N‐ to NNE‐striking basins, with sediment thicknesses in places exceeding 15 km, are separated by basement highs. We use two basin analysis approaches, BMT? backstripping and TecMod?time‐forward modelling, to determine stretching factors through time along the profile PETROBAR‐07. This 550 km‐long profile derived from wide‐angle reflection/refraction seismic data acquired in 2007, coincident with deep multichannel seismic reflection data. Detailed stratigraphic analysis of the reflection profile, in concert with a dense grid of 2D profiles tied to wells, provides timing and water depth constraint for the models. Velocity analysis of the wide‐angle data provides constraint on the cumulative crustal stretching. The north‐west trending cross‐section extends from continental craton, at the Varanger Peninsula, to within 16 km of the interpreted continent–ocean boundary. Rifting along the profile was episodic, with four distinct phases of basin formation during the Carboniferous, the Late Permian–Triassic, the Late Jurassic–Early Cretaceous and the Late Cretaceous–Eocene. Collectively, the basins exhibit a general trend of younging, narrowing, and deepening oceanward, suggesting a gradual focusing of rifting prior to final breakup. Cumulative stretching factors derived from BMT and TecMod correlate well with observed crustal thinning, and the two models provide uncertainty bounds for stretching factors for the separate rift phases. In contrast to orthogonally rifted margins, stretching is relatively minor immediately prior to transform breakup, with greater stretching occurring during earlier rift phases.  相似文献   

11.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

12.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

13.
The tectonic subsidence and gravity anomalies in the Malay and Penyu Basins, offshore Peninsular Malaysia, were analysed to determine the isostatic compensation mechanism in order to investigate their origin. These continental extensional basins contain up to 14  km of sediment fill which implies that the crust had been thinned significantly during basin development. Our results suggest, however, that the tectonic subsidence in the basins cannot be explained simply by crustal thinning and Airy isostatic compensation.
The Malay and Penyu Basins are characterized by broad negative free-air gravity anomalies of between −20 and −30  mGal. To determine the cause of the anomaly, we modelled four gravity profiles across the basins using a method that combines two-dimensional flexural backstripping and gravity modelling techniques. We assumed a model of uniform lithospheric stretching and Airy isostasy in the analysis of tectonic subsidence. Our study shows that the basins are probably underlain by relatively thinned crust, indicating that some form of crustal stretching was involved. To explain the observed gravity anomalies, however, the Moho depth that we calculated based on the free-air gravity data is about 25% deeper than the Moho predicted by assuming Airy isostasy (Backstrip Moho). This suggests that the Airy model overestimates the compensation and that the basins are probably undercompensated isostatically. In other words, there is an extra amount of tectonic subsidence that is not compensated by crustal thinning, which has resulted in the discrepancy between the gravity-derived Moho and the Backstrip Moho. We attribute this uncompensated or anomalous tectonic subsidence to thin-skinned crustal extension that did not involve the mantle lithosphere. The Malay and Penyu Basins are interpreted therefore as basins that formed by a combination of whole-lithosphere stretching and thin-skinned crustal extension.  相似文献   

14.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

15.
Regional seismic reflection profiles tied to lithological and biostratigraphic data from deep exploration wells have been used to determine the structure and evolution of the poorly known basins of northern Somalia. We recognize six major tectonostratigraphic sequences in the seismic profiles: Middle‐Late Jurassic syn‐rift sequences (Adigrat and Bihen Group), ?Cenomanian‐Campanian syn‐rift sequences (Gumburo Group), Campanian‐Maastrichtian syn‐rift sequences (Jesomma Sandstones), Palaeocene post‐rift sequences (Auradu Limestones), Early‐Middle Eocene post‐rift sequences (Taleh Formation) and Oligocene‐Miocene (Daban Group) syn‐rift sequences. Backstripping of well data provides new constraints on the age of rifting, the amount of crustal and mantle extension, and the development of the northern Somalia rifted basins. The tectonic subsidence and uplift history at the wells can be explained by a uniform extension model with three episodes of rifting punctuated by periods of relative tectonic quiescence and thermal subsidence. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr and had a NW‐SE trend. We interpret the rift as a late stage event associated with the break‐up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20–40 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi‐rift extensional model with stretching factor, β, of 1.09–1.14 and 1.05–1.28 for the first and second rifting events, respectively. The model, fails, however, to completely explain the slow subsidence and uplift history of the margin during Early Cretaceous to Late Cretaceous. We attribute this slow subsidence to the combined effect of a sea‐level fall and regional uplift, which caused a major unconformity in northern Somalia. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift developed along the Gulf of Aden and reactivated the Guban, Nogal and Daroor basins, and is related to the opening of the Gulf of Aden. As a result of these events the crust and upper mantle were thinned by up to a factor of two in some basins. In addition, several distinct petroleum systems developed. The principal exploration play is for Mesozoic petroleum systems with the syn‐rift Oligocene‐Miocene as a subordinate objective owing to low maturity and seal problems. The main seals for the different plays are various shales, some of which are also source rocks, but the Early Eocene evaporites of the Taleh formations can also perform a sealing role for Palaeogene or older generated hydrocarbons migrating vertically.  相似文献   

16.
This paper describes a method for determining Moho depth, lithosphere thinning factor (γ= 1 − 1/β) and the location of the ocean–continent transition at rifted continental margins using 3-D gravity inversion which includes a correction for the large negative lithosphere thermal gravity anomaly within continental margin lithosphere. The lateral density changes caused by the elevated geotherm in thinned continental margin and adjacent ocean basin lithosphere produce a significant lithosphere thermal gravity anomaly which may be in excess of −100 mGal, and for which a correction must be made in order to determine Moho depth accurately from gravity inversion. We describe a method of iteratively calculating the lithosphere thermal gravity anomaly using a lithosphere thermal model to give the present-day temperature field from which we calculate the lithosphere thermal density and gravity anomalies. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (γ= 1 − 1/β) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. For oceanic lithosphere, the lithosphere thermal model used to predict the lithosphere thermal gravity anomaly may be conditioned using ocean isochrons from plate reconstruction models to provide the age and location of oceanic lithosphere. A correction is made for crustal melt addition due to decompression melting during continental breakup and seafloor spreading. We investigate the sensitivity of the lithosphere thermal gravity anomaly and the predicted Moho depth from gravity inversion at continental rifted margins to the methods used to calculate and condition the lithosphere thermal model using both synthetic models and examples from the North Atlantic.  相似文献   

17.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

18.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

19.
S.Liu  S.Yang 《Basin Research》2000,12(1):1-18
Upper Triassic, Lower–Middle Jurassic and Upper Jurassic strata in the western Ordos Basin of North China are interpreted as three unconformity-bounded basin phases, BP-4, BP-5 and BP-6, respectively. The three basin phases were deposited in three kinds of predominantly continental basin: (1) a Late Triassic composite basin with a south-western foreland subbasin and a north-western rift subbasin, (2) an Early–Middle Jurassic sag basin and (3) a Late Jurassic foreland molasse wedge. Within the Late Triassic composite basin BP-4 includes three sequences, S4-1, S4-2 and S4-3. In the south-western foreland subbasin, the three sequences are the depositional response to three episodes of thrust load subsidence, and are mainly composed of alluvial fan, steep-sloped lacustrine delta and fluvial systems in front of a thrust fault-bounded basin flank. In the north-western rift subbasin, the three sequences are the depositional response to three episodes of rift subsidence, and consist of alluvial fan – braid plain and fan delta systems basinward of a normal fault-bounded basin margin. In the sag basin BP-5 includes four sequences, S5-1, S5-2, S5-3 and S5-4, which reflect four episodes of intracratonic sagging events and mainly consist of fluvial, gentle-gradient lacustrine delta and lacustrine systems sourced from peripheral uplifted flanks. BP-6, deposited in the foreland-type basin, includes one sequence, S6-1, which is the depositional response to thrust load subsidence and is composed of alluvial fan systems. The formation and development of these three kinds of basins was controlled by Late Triassic and Jurassic multi-episode tectonism of basin-bounding orogenic belts, which were mainly driven by collision of the North China and South China blocks and subduction of the western Pacific plate.  相似文献   

20.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号