首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Jurassic succession of Gangta Bet in the Kachchh basin of western India comprises around 130 m of mostly siliciclastic rocks. The strata belong to the Gangta Member of the Gadhada Formation and are herein sub-divided into four units: the Gangta sandstone beds, the lower silty sandstone beds, the upper silty sandstone beds, and the Gangta ammonite beds. These units can be separated by three marker horizons: the Brachiopod bed, the Gangta Conglomerate Bed, and the Gervillella Bed. Ammonites indicate an Oxfordian age for the upper half of the succession, but the scarcity of identifiable fossils in its basal part so far prevented precise biostratigraphic assignments. The shallow-water sediments can be interpreted as parasequences as a result of minor sea-level changes. Deposition took place close to the palaeo-coastline at water depths around the fair-weather wave-base.  相似文献   

2.
Long‐term relative sea‐level cycles (0·5 to 6 Myr) have yet to be fully understood for the Cretaceous. During the Aptian, in the northern Maestrat Basin (Eastern Iberian Peninsula), fault‐controlled subsidence created depositional space, but eustasy governed changes in depositional trends. Relative sea‐level history was reconstructed by sequence stratigraphic analysis. Two forced regressive stages of relative sea‐level were recognized within three depositional sequences. The first stage is late Early Aptian age (intra Dufrenoyia furcata Zone) and is characterized by foreshore to upper shoreface sedimentary wedges, which occur detached from a highstand carbonate platform, and were deposited above basin marls. The amplitude of relative sea‐level drop was in the order of tens of metres, with a duration of <1 Myr. The second stage of relative sea‐level fall occurred within the Late Aptian and is recorded by an incised valley that, when restored to its pre‐contractional attitude, was >2 km wide and cut ≥115 m down into the underlying Aptian succession. With the subsequent transgression, the incision was backfilled with peritidal to shallow subtidal deposits. The changes in depositional trends, lithofacies evolution and geometric relation of the stratigraphic units characterized are similar to those observed in coeval rocks within the Maestrat Basin, as well as in other correlative basins elsewhere. The pace and magnitude of the two relative sea‐level drops identified fall within the glacio‐eustatic domain. In the Maestrat Basin, terrestrial palynological studies provide evidence that the late Early and Late Aptian climate was cooler than the earliest part of the Early Aptian and the Albian Stage, which were characterized by warmer environmental conditions. The outcrops documented here are significant because they preserve the results of Aptian long‐term sea‐level trends that are often only recognizable on larger scales (i.e. seismic), such as for the Arabian Plate.  相似文献   

3.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

4.
Sedimentary Characteristics of the Cretaceous in the Songliao Basin   总被引:2,自引:0,他引:2  
The rupture of the lithosphere in Late Jurassic brought about the eruption of basaltic magma in the Songliao Basin. The evolution of the basin in Cretaceous progressed through six stages: pre-rift doming, extensional fracturing, fault subsidence, fault downwarping, downwarping and shringkage, resulting in the deposition of terrstrial facies nearly 10,000 m thick. There are different depositional sequences in these stages: the depositional period of the Early Cretaceous Shahezi and Yincheng Formations is the development stage of the down-faulted basin, forming a volcanic rock-alluvial fan-fan delta-lacustrine (intercalated with episodic turbidites)-swamp facies sequences; the period of the Early Cretaceous Dengluku Formation is the transformation stage of fault subsidence into fault downwarping of the basin, forming a sequence mainly of alluvial plain-lacustrine facies; the depositional period of the Early Cretaceous Quantou Formation-Late Cretaceous Nenjiang Formation is the downwarping stage of the basin, forming an alluvial plain-delta-lacustrine facies sequence; the period of the Late Cretaceous Sifangtai Formation-Mingshui Formation is the shringkage stage of the basin, forming again a sequence mainly of alluvial plain-alluvial fan and small relict lacustrine facies. These vertical depositional sequences fully display the sedimentary characteristics of a failed continental rift basin. Many facts indicate that the two large-scale lake invasions, synchronous with the global rise of sea level, which took place in the downwarping stage of the basin development, led to the connection between the lake and sea.  相似文献   

5.
德国北部盆地上侏罗统广泛发育,但野外露头地层普遍出露不全。Hildesheimer Wald地区Wendhausen 6井和Süntel山地区Eulenflucht 1井完整钻遇了上侏罗统牛津阶和启莫里阶地层,为分析该区晚侏罗世沉积演化过程及其所反映的古环境变化规律提供了丰富的资料。通过岩心描述和岩石薄片镜下观察,根据不同层段的颗粒成分、生物组合特征、沉积结构和构造等特征,在2口井的岩心中共划分出14个岩石类型,分别形成于碳酸盐岩斜坡和三角洲环境。建立了该区牛津阶和启莫里阶垂向沉积演化序列,垂向上由Heersum组到Süntel组,沉积环境逐步由外陆棚、内陆棚、临滨过渡到了开阔台地、潮坪环境,表现出了相对海平面降低的进积过程。同时对不同沉积相中保存较好的以低镁方解石为主要成分的牡蛎壳进行原位Mg/Ca值(古温度指标)测试,得出该区牛津期至启莫里期总体表现出了古气候变暖的趋势,且共有3次气候变暖过程。这一古气候变化与由沉积相分析得出的古气候变化一致,且同苏格兰、俄罗斯台地古温度变化趋势有很好的对应关系,表明古气候是控制该区沉积演化的一个重要因素,且牡蛎壳Mg/Ca值可以做为一个古气候指示指标应用于其他地区的古气候分析中。  相似文献   

6.
This study examines the sedimentary response to a tectonically driven relative sea‐level fall that occurred in the Neuquén Basin, west‐central Argentina, during the late Early Valanginian (Early Cretaceous). At this time the basin lay behind the emergent Andean magmatic arc to the west. Following the relative sea‐level fall, sedimentation was limited to the central part of the Neuquén Basin, with the deposition of a predominantly clastic, continental to shallow marine wedge on top of basinal black shales. This lowstand wedge is called the Mulichinco Formation and consists of a third‐order sequence that lasted about 2 Myr and contains high frequency lowstand, transgressive, and highstand deposits. Significant variations in facies, depositional architecture, and internal organization of the sequence occur along depositional strike. These variations are attributed mainly to tectonic and topographic controls upon sediment flux, basin gradient, fault tilting, and shifting of the depocentre through time. These controls were ultimately related to asymmetrically distributed tectonic activity that was greater towards the magmatic arc in the west. The superposition of fluvial deposits directly upon offshore facies provides unequivocal evidence for a sequence boundary at the base of the Mulichinco Formation. However, the Mulichinco sequence boundary is marked by shallow, low erosional relief and widespread fluvial deposition. The surface lacks prominent valleys traditionally associated with sequence boundaries. This non‐erosive sequence boundary geometry is attributed to the ramp‐type geometry of the basin and/or rapid uplift that limited stratigraphic adjustment to base‐level fall. Significant along‐strike facies changes and a low‐relief sequence boundary are attributes that may be common in tectonically active, semi‐enclosed basins (e.g. shallow back‐arc basins, foreland basins).  相似文献   

7.
柴北缘东段石炭纪沉积特征及原型盆地恢复   总被引:2,自引:0,他引:2       下载免费PDF全文
在残留盆地展布、地层发育特征及大地构造背景分析的基础上,恢复了柴北缘东段石炭纪的原型盆地格局。研究表明:石炭纪时期,柴北缘处于“三洋夹两陆”的构造背景,经历了早石炭世的两次海侵和晚石炭世的持续海侵;受NWW向断裂系统的控制,盆地整体为昆仑弧后裂谷盆地,但由南向北构造发育特征表现为弧后陆表海盆地一陆表海盆地内低隆起一弧后裂谷盆地的组合特征。石炭系沉积以后,柴北缘经历了多期不同性质的构造运动,石炭纪后期变形强烈,原型龠地特征被彻底改造。  相似文献   

8.
We report here the first Dichotomoceras of the Indian subcontinent at Kantkote (Wagad) in the proximal most exposed part of the Kachchh Basin. This is further addition to the significant enlargement of the Oxfordian ammonoid record made earlier (Krishna et al. 1994, 1995, 1998, 2000). Near continuous presence of ammonoids has been recorded in ca 55 m thick succession, almost immediately above the Schilli Subzone, that was considered ammonoid devoid earlier. The ammonoid density, diversity and frequency in this just discovered ca 55 m thick column are much scarcer in comparison to the underlying 10 m thick ammonoid abundant Schilli Subzone. Examples of Dichotomoceras are determined almost throughout the said interval which in our preliminary taxonomic evaluation appear identical or close to D. rotoides (Ronch.), D. stenocycloides (Siem.), D. bifurcatus (Quenst.) and D. crassus Enay. It thus suggests the characterization of the Rotoides Subzone of the Transversarium Zone and the superjacent Bifurcatus Zone of the column at least up to the early Late Oxfordian.  相似文献   

9.
珠江口盆地的形成和演化过程经历了晚白垩世至渐新世的裂陷-晚渐新世至中中新世的热沉降-晚中新世至今的断块升降3个演化阶段,沉积了陆相-半封闭海相-开阔海相3套不同的沉积体系组合。总结归纳出珠江口盆地新生代3个阶段的沉积充填模式,并发现:裂陷阶段以充填式堆积和河湖沉积为特征,形成盆地最重要的湖相烃源岩--文昌组泥岩;热沉降阶段以海陆交替、海相沉积体系为特征,为形成良好的储盖组合创造了条件,沉积了珠江口盆地内最主要的储油层系--珠海组、珠江组以及韩江组,主要为滨海相、三角洲相等碎屑岩沉积;晚期盆地整体下沉,区域性盖层形成。该沉积组合反映了张性边缘海盆地的演化特点,盆地演化与资源效应表现在裂陷期、热沉降期及断块升降期的生储盖配置,故勘探目的层段为热沉降阶段所形成的三角洲碎屑岩与陆棚碳酸盐岩。  相似文献   

10.
This paper describes 11 microfacies types in late Bathonian–Early Callovian carbonates of the Kuldhar Member of the Jaisalmer Formation (Rajasthan) and the Keera Golden Oolite Member of the Chari Formation (Kachchh Mainland) western India. The different microfacies associations reported in this study reflect an ideal shallowing upward sequence, representing a system of bioclastic bars developed on the lower ramp, evolving into an oolitic bar-to-bank system separating restricted lagoonal—from lower ramp environment. Four main types of cements, i.e. bladed, fibrous, syntaxial overgrowth and blocky cement (characterized in a few cases by ferroan calcite and anhydrite II) occur in these carbonates. The study also reveals that chemical compaction followed the two phases of early mechanical compaction that largely governed porosity of these limestones. However, micritization and neomorphism also contributed significantly in this respect. Diagenetic signatures in these carbonates suggest that marine phreatic and fresh water phreatic environments dominated, but deep burial diagenesis also played its role in shaping these rocks. The early and late diagenetic changes have been controlled by the depositional facies evolving in a basin riddled with rifting in an extensional tectonic regime forcing regional-scale sea level fluctuations.  相似文献   

11.
云南兰坪盆地三叠纪沉积作用与古地理演化   总被引:3,自引:0,他引:3       下载免费PDF全文
根据岩石沉积类型、物源供给、成因机制和沉积序列 ,结合区域地质特征 ,将兰坪盆地三叠系划分为陆相火山泥石流、河流相、三角洲相、潮坪相、浅海陆棚相、碳酸盐台地相和深水盆地相7种主要沉积类型。通过对沉积相的详细分析 ,恢复其古地理格架和面貌 ,探讨岩相古地理的变迁历史 ,从而表明三叠纪早期到晚期 ,其古地理经历了陆相环境→碎屑海盆→碳酸盐海盆到碎屑海盆的转换 ,即两次海侵 海退旋回。早期的海域分布范围较小 ,晚期的海域分布范围较宽 ,并成为统一的海盆。  相似文献   

12.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

13.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The study deals with the depositional environment of Jumara Dome sediments. The Jumara Dome is an important outcrop of Bathonian to Oxfordian sediments amongst the Kachchh Mainland exposures. On the basis of facies analysis three associations have been documented, namely, G-1 consisting of low energy facies comprising of cross-bedded sandstone, massive sandstone, grey shale and thin bedded sandstone, bioclastic — lithoclastic grainstone, bioclastic — lithoclastic packstone, microbioclastic packstone/wackestone, bioturbated laminated wackestone to mudstone and pelagic lime mudstone; G-II consisting of moderate energy facies comprising of laminated sandstone and grapestone or agglutinated grainstone; G-III consisting of high energy facies comprising of interbedded gypsiferous shale and sandstone/siltstone, oolitic grainstone to conglomerate and bioclastic grainstone. The facies associations reflect an ideal shallowing upward sequence representing slope, bioclast bar, lagoon and inner shelf. Presence of wide range of facies indicates that the rocks of the studied area were deposited during the fluctuating sea level, interrupted by the storms, in the shallow marine environment.  相似文献   

15.
The Hefei Basin is the largest basin in the North China landmass with complete and well-preserved Mesozoic and Cenozoic strata. In the basin there developed a suite of extremely thick “red beds” in the Mesozoic. Owing to complex evolution processes and a lack of paleontological traces, there have been controversies regarding the division and correlation of this suite of red beds. Based on results obtained in recent years in drilling, seismic and surface geological investigations and in consideration of relationships between seismic sequences and regional tectonic events, as well as evidence in paleontology, petrology and isotopic dating, this paper preliminarily puts forward the following ideas about the sequence stratigraphic framework of the continental “red beds” in the Hefei Basin. (1) The Zhougongshan Formation and the Yuantongshan Formation have similar lithologic, geophysical and paleontological characteristics, so we incorporate them into a single formation, called the Yuantongshan Formation, and the original Zhougongshan and Yuantongshan Formations are regarded as the upper and the lower parts of the newly defined Yuantongshan Formation. Its age is the Middle Jurassic; (2) the Zhuxiang Formation belongs to the Upper Jurassic Series and (3) the age of the Xiangdaopu Formation is the Lower Cretaceous. Furthermore, signatures of depositional evolution are analyzed in the paper based on features of seismic reflection, outcrops and drilling data. The Early and Middle Jurassic is characterized by a foreland basin, which is influenced mainly by uplift and longitudinal compression of the Dabieshan Mountains; the Lower Jurassic System has a relatively small depositional area; the Middle Jurassic strata are distributed extensively over the whole basin, marking the summit of basin development; a flexure basin is characteristic of the Late Jurassic, manifesting a joint effect of the Dabieshan and Zhangbaling Mountains with the former being more significant. In the Early Cretaceous, the Xiangdaopu Formation was distributed in the Daqiao depression, evidently affected by extension of the Tanlu fault; in the Late Cretaceous, the Hefei Basin was subjected to dismembering and the Zhangqiao Formation was distributed in the east-west direction along the downthrown side of the fault.  相似文献   

16.
Seismic and drilling well data were used to examine the occurrence of multiple stratigraphic unconformities in the Tarim Basin, NW China. The Early Cambrian, the Late Ordovician and the late Middle Devonian unconformities constitute three important tectonic sequence boundaries within the Palaeozoic succession. In the Tazhong, Tabei, Tadong uplifts and the southwestern Tarim palaeo‐uplift, unconformities obviously belong to superimposed unconformities. A superimposed unconformity is formed by superimposition of unconformities of multiple periods. Areas where superimposed unconformities develop are shown as composite belts of multiple tectonic unconformities, and as higher uplift areas of palaeo‐uplifts in palaeogeomorphologic units. The contact relationship of unconformities in the lower uplift areas is indicative of truncation‐overlap. A slope belt is located below the uplift areas, and the main and secondary unconformities are characterized by local onlap reflection on seismic profiles. The regional dynamics controlled the palaeotectonic setting of the Palaeozoic rocks in the Tarim Basin and the origin and evolution of the basin constrained deposition. From the Sinian to the Cambrian, the Tarim landmass and its surrounding areas belonged to an extensional tectonic setting. Since the Late Ordovician, the neighbouring north Kunlun Ocean and Altyn Ocean was transformed from a spreading ocean basin to a closed compressional setting. The maximum compression was attained in the Late Ordovician. The formation of a tectonic palaeogeomorphologic evolution succession from a cratonic margin aulacogen depression to a peripheral foreland basin in the Early Caledonian cycle controlled the deposition of platform, platform margin, and deep‐water basin. Tectonic uplift during the Late Ordovician resulted in a shallower basin which was followed by substantial erosion. Subsequently, a cratonic depression and peripheral or back‐arc foreland basin began their development in the Silurian to Early–Middle Devonian interval. In this period, the Tabei Uplift, the Northern Depression and the southern Tarim palaeo‐uplift showed obvious control on depositional systems, including onshore slope, shelf and deep‐water basin. The southern Tarim Plate was in a continuous continental compressional setting after collision, whereas the southern Tianshan Ocean began to close in the Early Ordovician and was completely closed by the Middle Devonian. At the same time, further compression from peripheral tectonic units in the eastern and southern parts of the Tarim Basin led to the expansion of palaeo‐uplift in the Late Devonian–Early Carboniferous interval, and the connection of the Tabei Uplift and Tadong Uplift, thus controlling onshore, fluvial delta, clastic coast, lagoon‐bay and shallow marine deposition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
兰州-民和盆地早白垩世的沉积环境分析   总被引:6,自引:0,他引:6       下载免费PDF全文
兰州-民和盆地早白垩世充填了巨厚的陆源碎屑物,笔者通过对碎屑物组合方式的研究,陆盆内为冲积扇相→湖泊相→湖控三角洲相序的充填序列;通过对陆盆的基底特征,古流向、物源区和陆盆演化的分析,揭示了盆地的沉积特征。  相似文献   

18.
The evaporitic Hessian Zechstein Basin is a sub‐basin of the Southern Zechstein Basin, situated at its southern margin. Twelve facies groups were identified in the Zechstein Limestone and Lower Werra Anhydrite in order to better understand the sequence‐stratigraphic evolution of this sub‐basin, which contains economically important potassium salts. Four different paleogeographic depositional areas were recognized based on the regional distribution of facies. Siliciclastic‐carbonate, carbonate, carbonate‐evaporite and evaporite shallowing‐upward successions are developed. These allow the establishment of parasequences and sequences, as well as correlation throughout the Hessian Basin and into the Southern Zechstein Basin. Two depositional sequences are distinguished, Zechstein sequence 1 and Zechstein sequence 2. The former comprises the succession from the Variscan basement up to the lowermost part of the Werra Anhydrite, including the Kupferschiefer as part of the transgressive systems tract. The highstand systems tract is defined by the Zechstein Limestone, in which two parasequences are developed. In large parts of the Hessian Basin, Zechstein sequence 1 is capped by a karstic, subaerial exposure surface, interpreted as recording a type‐1 sequence boundary that formed during a distinct brine level fall. Low‐lying central areas (Central Hessian Sub‐basin, Werra Sub‐basin), however, were not exposed and show a correlative conformity. Topography was minimal at the end of sequence 1. Widely developed perilittoral, sabkha and salina shallowing‐upward successions indicate a renewed rise of brine level (interpreted as a transgressive systems tract), because of inflow of preconcentrated brines from the Southern Zechstein Basin to the north. This marks the initiation of Zechstein sequence 2, which comprises most of the Lower Werra Anhydrite. In the Central Hessian Sub‐basin, situated proximal to the brine inflow and on the ridges within the Hessian Basin, physico‐chemical conditions were well suited for sulphate precipitation to form a thick cyclic succession. It consists of four parasequences that completely filled the increased accommodation space. In contrast, only minor sulphate accumulation occurred in the Werra Sub‐basin, situated further southwards and distal to the inflow. As a result of substantially different sulphate precipitation rates during increased accommodation, water depth in the region became more variable. The Werra Sub‐basin, characterized by very low sedimentation rates, became increasingly deeper through time, trapping dense halite brines and precipitating rock salt deposits (Werra Halite). This ‘self‐organization’ model for an evaporitic basin, in which depositional relief evolves with sedimentation and relief is filled by evaporite thereafter, contradicts earlier interpretations, that call upon the existence of a tectonic depression in the Werra area, which controlled sedimentation from the beginning of the Zechstein.  相似文献   

19.
The Early Oligocene (Late Rupelian) Alzey Formation (Mainz Basin, Upper Rhine Graben, Germany) records the development of a rocky coast depositional system during transgression. The formation unconformably overlies Permian bedrock across a composite transgressive ravinement surface. Exposure of the surface shows a succession of subplanar bedrock terraces, separated by near‐vertical risers. Terraces show a broad staircase geometry and display wave‐erosional features (notches, sea stacks, furrows). Detailed sedimentological and palaeoecological investigations reveal prograding beachface and shoreface depositional units that overlie terraces and are adjacent to risers. Terraces are interpreted as wave‐cut platforms, backed by palaeocliffs. The staircase architecture records the episodic landward migration of palaeoshorelines onto palaeotopographic highs during the Early Oligocene. Stacking patterns of gravelly beach and shoreface associated units (facies tracts) indicate successive episodes of terrace cutting, beach development, drowning and shoreline backstepping during an overall relative sea‐level rise. The exceptional preservation of the stair‐cased rocky shore may be attributed to a highly jerky rising relative sea‐level, as the result of the conjugated effects of rift‐controlled tectonic subsidence and eustatic sea‐level oscillations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The Athgarh Formation is the northernmost extension of the east coast Upper Gondwana sediments of Peninsular India. The formation of the present area is a clastic succession of 700 m thick and was built against an upland scarp along the north and northwestern boundary of the basin marked by an E-W-ENE-WSW boundary fault. A regular variation in the dominant facies types and association of lithofacies from the basin margin to the basin centre reveals deposition of the succession in an alluvial fan environment with the development of proximal, mid and distal fan subenvironments with the distal part of the fan merging into a lake. Several fans coalesced along the basin margin, forming a southeasterly sloping, broad and extensive alluvial plain terminating to a lake in the centre of the basin. Aggradation of fans along the subsiding margin of the basin resulted in the Athgarh succession showing remarkable lateral facies change in the down-dip direction. The proximal fan conglomerates pass into the sandstone-dominated mid-fan deposits, which, in turn, grade into the cyclic sequences of sandstone-mudstone of the distal fan origin. Further downslope, thick sequence of lacustrine shales occur. The faulted boundary condition of the basin and a thick pile of lacustrine sediments at the centre of the basin suggest that tectonism both in the source area and depositional site has played an important role throughout the deposition of the Athgarh succession of the present area. The vertical succession fines upward with the coarse proximal deposits at the base and fine distal deposits at the top, suggesting deposition of the succession during progressive reduction of the source area relief after a single rapid uplift related to a boundary fault movement.The NW-SE trending fault defining the Son-Mahanadi basin of Lower Gondwana sediments are shear zones of great antiquity and these were rejuvenated under neo-tensional stress during Lower Gondwana sedimentation. The E-W-ENE-WSW trending fault of the Athgarh basin, on the other hand, define tensional rupture of much younger date. In the Early Cretaceous period, there was a reversal of palaeoslope in the Athgarh basin (southward slope) with respect to the Son-Mahanadi basin (northward slope). During the phase drifting of the Indian continent and with the evolution of Indian Ocean in the Early Cretaceous period, the tectonic events in the plate interior was manifested by formation of new grabens like the Athgarh graben.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号