首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of an ongoing project aimed at studying the age and metallicity gradients of the stellar populations along the bars of a sample of barred spirals of different morphological types, we present our first results on NGC 4314 (SBa). We have obtained optical and NIR colours and spectral indices along the bar and we interpret some of these results here and discuss their uncertainties on the basis of single stellar population models. In a preliminary analysis, we constrain the limits for the age and metallicity of the nucleus and two selected regions in the star formation ring of NGC 4314, characterizing both as metal rich (Z<Z solar) stellar populations, and finding a difference in the mean luminosity-weighted age of at least ∼ 3–4 Gyr. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
By using the SDSS spectra, we have studied the star formation properties of the nearby spiral galaxies selected from the Revised Bright Galaxy Sample, and tried to find the effect of bar structure on the star formation activity in the nuclear regions of nearby galaxies. The stellar population composition and the intensity of star formation activities of each sample galaxy are acquired by using the stellar population synthesis code—STARLIGHT, and the star formation properties of nuclear regions are compared with those of integral sample galaxies. We find that the star formation in barred spiral galaxies is more active than that of unbarred spirals, and that barred spirals have younger stellar populations.  相似文献   

3.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

4.
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population models using the recently published methods of Proctor & Sansom , applied to extragalactic GCs for the first time. A number of GCs indicate the presence of strong blue horizontal branches that are not fully accounted for in the current stellar population models. We find all of the GCs to be ∼13 Gyr old according to simple stellar populations, with a large range of metallicities. From the galaxy spectrum we find NGC 1052 to have a luminosity-weighted central age of ∼2 Gyr and metallicity of  [Fe/H]∼+0.6  . No strong gradients in either age or metallicity were found to the maximum radius measured  (0.3  r e≃ 1 kpc)  . However, we do find a strong radial gradient in α-element abundance, which reaches a very high central value. The young central starburst age is consistent with the age inferred from the H  i tidal tails and infalling gas of ∼1 Gyr. Thus, although NGC 1052 shows substantial evidence for a recent merger and an associated starburst, it appears that the merger did not induce the formation of new GCs, perhaps suggesting that little recent star formation occurred. This interpretation is consistent with 'frosting' models for early-type galaxy formation.  相似文献   

5.
利用SDSS光谱,研究了IRAS卫星亮红外源星表中的盘状星系中的恒星形成性质,并着重探讨了棒对星系核区恒星形成活动的影响.利用星族合成的方法得到了每个样本星系核区的恒星组成性质、恒星形成活动的强度等信息,并比较了星系整体和核区恒星形成性质的差异.得到的结论:除去相互作用,样本中的棒星系显示出比非棒旋星系更强的核区恒星形成活动和更多的年轻星族成分.  相似文献   

6.
We present a new method for determining the age and relative contribution of different stellar populations in galaxies based on the genetic algorithm. We apply this method to the barred spiral galaxy NGC 3384, using CCD images in U, B, V, R and I bands. This analysis indicates that the galaxy NGC 3384 is mainly inhabited by old stellar population (age >109yr). Some problems were encountered when numerical simulations are used for determining the contribution of different stellar populations in the integrated color of a galaxy. The results show that the proposed genetic algorithm can search efficiently through the very large space of the possible ages.  相似文献   

7.
A new photometric system suitable for deep, precise and quick metallicity mapping in galaxies is proposed. We find a linear correlation between our metallicity index and the Mg2 index for stellar, globular-cluster, and early-type galaxy spectra, and model spectral energy distributions of the simple stellar populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The frequency of barred spiral galaxies as a function of redshift contains important information on the gravitational influence of stellar discs in their dark matter haloes and may also distinguish between contemporary theories for the origin of galactic bulges. In this paper we present a new quantitative method for determining the strength of barred spiral structure, and verify its robustness to redshift-dependent effects. By combining galaxy samples from the Hubble Deep Field North with newly available data from the Hubble Deep Field South, we are able to define a statistical sample of 46 low-inclination spiral systems with I 814 W<23.2 mag. Analysing the proportion of barred spiral galaxies seen as a function of redshift, we find a significant decline in the fraction of barred spirals with redshift. The redshift distribution of 22 barred and 24 non-barred spirals with suitable inclinations is inconsistent with their being drawn from the same distribution at the 99 per cent confidence level. The physical significance of this effect remains unclear, but several possibilities include dynamically hotter (or increasingly dark-matter-dominated) high-redshift discs, or an enhanced efficiency in bar destruction at high redshifts. By investigating the formation of the 'orthogonal' axis of Hubble's classification tuning fork, our result complements studies of evolution in the early–late sequence, and pushes to later epochs the redshift at which the Hubble classification sequence is observed to be in place.  相似文献   

9.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

10.
Spiral galaxies contain both ordered and chaotic orbits. In normal spirals the perturbations are weak (of order 2–10%) and most orbits are ordered. The density wave theory refers mainly to linear perturbations. Nonlinear effects appear in the outer parts of the open spirals (S_b, S_c) and produce the termination of these spirals near the 4/1 resonance. On the other hand in barred spirals the perturbations are relatively strong (of order 100%). Then the outer spirals and the envelope of the bar are composed mainly of chaotic orbits, while the main body of the bar is composed of ordered orbits. The chaotic orbits of the spiral arms of strong barred galaxies are sticky, i.e. they do not escape from the galaxy for at least a Hubble time. The forms of these spirals are delineated by the unstable manifolds of the unstable periodic orbits L_1, L_2 near the ends of the bar and of other unstable periodic orbits inside and outside corotation.  相似文献   

11.
We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K -band surface brightness, K -band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface density.  相似文献   

12.
The formation of a disk galaxy within a slowly growing dark halo is simulated with a new chemo-dynamical model. The model describes the evolution of the stellar populations, the multi-phase ISM and all important interaction. I find, that the galaxy forms radially from inside-out and vertically from top-to-bottom. The derived stellar age distributions show that the inner halo is the oldest component, followed by the outer halo, the triaxial bulge, the halo-disk transition region and the disk. Despite the still idealized model, the final galaxy resembles present-day disk galaxies in many aspects. In particular, the stellar metallicity distribution in the halo of the model resembles the one of M31. The bulge in the model shows, at least two stellar subpopulations, an early collapse population and a population that formed later out of accreted disk mass. In the stellar metallicity distribution of the disk, I find a pronounced ‘G-dwarf problem’ which is the result of a pre-enrichment of the disk ISM with metal-rich gas from the bulge. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

13.
The overall morphology of the barred spiral galaxy NGC 7479 is modelled in numerical simulations of a minor merger. Special attention is paid to the morphology and velocity field of the asymmetric spiral structure and the strong stellar bar. The mass of the satellite galaxy is 1/10 of the mass of the primary disc, or 1/30 of the total mass of the primary. The satellite is placed initially in a circular prograde orbit at six disc scalelengths from the centre of the primary. We follow the evolution of the merger until the secondary galaxy reaches the nuclear region of the primary. A comparison between the modelled and observed morphologies of the stellar and the ionized and neutral gas distributions and velocity fields supports the hypothesis that the transient look of NGC 7479 is a result of a minor merger. We vary several of the initial parameters of the merger and discuss their effects on the resulting morphology. The merging satellite galaxy is likely to lie within the bar of NGC 7479. We identify a possible candidate in the observational data. We discuss briefly the most probable future evolution of NGC 7479 in the light of our minor-merger simulations, and conclude that NGC 7479 is likely to evolve toward an earlier Hubble type.  相似文献   

14.
The gas fraction is important for understanding the formation and evolution of galaxies. It is found that there are linear correlations between the atomic-gas-to-stellar mass ratio (G/S) and stellar population properties (age, metallicity and stellar mass) of galaxies. However, only a nearby galaxy sample was used. This work investigates how the correlations change with the redshift limit of galaxies, using three volume limited galaxy samples selected from Sloan Digital Sky Survey (SDSS). It shows that there are linear correlations between the G/S and logarithmic values of stellar age, metallicity and mass, for all galaxy samples. It also shows that the linear correlation between G/S and stellar age is much better than others and possibly can be used in future studies. In addition, the scatters of the fitted correlations are found to increase with upper redshift limit of sample galaxies.  相似文献   

15.
In the galaxy parameter fitting by means of stellar population synthesis, it is found that compared with the evolutionary population synthesis (EPS) model without binary interactions, the stellar age and metallicity of a galaxy derived from the EPS model with binary interactions are larger. But, we are still unclear how the binary interactions affect the galaxy evolution. For the early-type galaxies with the UV-excess phenomenon, there are two main-stream explanations: recent star formation (RSF) and binary interactions. In this study, we obtain the mass return rate and chemical yield for the stellar populations with and without binary interactions. In combination with the galaxy chemical evolution and photoionization models, we study the effects of binary interactions on the chemical evolution and metallicity evolution for the early-type galaxies with the UV-excess phenomenon under the two formation mechanisms. We find that the inclusion of binary interactions can raise the ejected mass, metallicity, alpha element, and accelerate the gas cooling. These can reasonably explain the conclusions made by the EPS models. Moreover, we find that the gas cooling is more efficient under the UV-excess formation mechanism by the binary interactions rather than the RSF, and the ratio of element abundance is different for the two mechanisms, which can be further used to distinguish these two mechanisms.  相似文献   

16.
It is assumed that the two-fold disc-wide symmetry of spirals is caused by density waves, but also the potential of a bar component may have a significant influence on structural properties. The strength of the bar component appears to be anti-correlated with the degree of symmetry of star-forming regions in the spiral arms (Rozas et al., 1998). We present new results of R and Hα surface photometry of a sample of bright barred spirals. A photometric decompositon of the galaxy components is carried out in order to make a more accurate measurement of the strength of the bar and its interrelation to gas and stars in the disc. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour–magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy.
A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]∼−2.0 to [Fe/H]∼−0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for several  Gyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10  Gyr ago, when the mean metallicity was in the range −1.3≤[Fe/H]≤−0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ∼1–0.5  Gyr ago.  相似文献   

18.
星系的光谱包含其内部恒星的年龄和金属丰度等信息, 从观测光谱数据中测量这些信息对于深入了解星系的形成和演化至关重要. LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope)巡天发布了大量的星系光谱, 这些高维光谱与它们的物理参数之间存在着高度的非线性关系. 而深度学习适合于处理多维、海量的非线性数据, 因此基于深度学习技术构建了一个8个卷积层$+$4个池化层$+$1个全连接层的卷积神经网络, 对LAMOST Data Release 7 (DR7)星系的年龄和金属丰度进行自动估计. 实验结果表明, 使用卷积神经网络通过星系光谱预测的星族参数与传统方法基本一致, 误差在0.18dex以内, 并且随着光谱信噪比的增大, 预测误差越来越小. 实验还对比了卷积神经网络与随机森林回归模型、深度神经网络的参数测量结果, 结果表明卷积神经网络的结果优于其他两种回归模型.  相似文献   

19.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

20.
We have investigated the stellar population properties in the central regions of a sample of lenticular galaxies with bars and single-exponential outer stellar disks using the data from the SAURON integral-field spectrograph retrieved from the open Isaac Newton Group Archive. We have detected chemically decoupled compact stellar nuclei with a metallicity twice that of the stellar population in the bulges in seven of the eight galaxies. A starburst is currently going on at the center of the eighth galaxy and we have failed to determine the stellar population properties from its spectrum. The mean stellar ages in the chemically decoupled nuclei found range from 1 to 11 Gyr. The scenarios for the origin of both decoupled nuclei and lenticular galaxies as a whole are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号