首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

2.
We present the luminosity function and measurements of the scalelengths, colours and radial distribution of dwarf galaxies in the Coma cluster down to R =24. Our survey area is 674 arcmin2; this is the deepest and most detailed survey covering such a large area.
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ L α that is steep (α∼−1.7) for −15< MR <−11, and is shallower brighter than this. The curvature in the luminosity function at MR ∼−15 is statistically significant.
(2) The galaxies that contribute most strongly to the luminosity function at −14< MR <−12 have colours and scalelengths that are consistent with those of local dwarf spheroidal galaxies placed at the distance of Coma.
(3) These galaxies with −14< MR <−12 have a colour distribution that is very strongly peaked at B − R =1.3. This is suggestive of a substantial degree of homogeneity in their star formation histories and metallicities.
(4) These galaxies with −14< MR <−12 also appear to be more confined to the cluster core ( r ∼200 kpc) than the brighter galaxies. Alternatively, this observation may be explained in part or whole by the presence of an anomalously high number of background galaxies behind the cluster core. Velocity measurements of these galaxies would distinguish between these two possibilities.  相似文献   

3.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

4.
We present K -band observations of the low-luminosity galaxies in the Coma cluster, which are responsible for the steep upturn in the optical luminosity function at M R∼−16, discovered recently. The main results of this study are as follows.
(i) The optical–near-infrared colours of these galaxies imply that they are dwarf spheroidal galaxies. The median B − K colour for galaxies with −19.3< MK <−16.3 is 3.6 mag.
(ii) The K -band luminosity function in the Coma cluster is not well constrained, because of the uncertainties due to the field-to-field variance of the background. However, within the estimated large errors, this is consistent with the R -band luminosity function, shifted by ∼3 mag.
(iii) Many of the cluster dwarfs lie in a region of the B − K versus B − R colour–colour diagram where background galaxies are rare ( B − K <5; 1.2< B − R <1.6). Local dwarf spheroidal galaxies lie in this region too. This suggests that a better measurement of the K -band cluster luminosity can be made if the field-to-field variance of the background can be measured as a function of colour, even if it is large.
(iv) If we assume that none of the galaxies in the region of the B − K versus B − R plane given in (iii) in our cluster fields are background, and that all the cluster galaxies with 15.5< K <18.5 lie in this region of the plane, then we measure α=−1.41+0.34−0.37 for −19.3< MK −16.3, where α is the logarithmic slope of the luminosity function. The uncertainties in this number come from counting statistics.  相似文献   

5.
We present a search for  CO(1 → 0)  emission in three Local Group dwarf irregular galaxies: IC 5152, the Phoenix dwarf and UGCA 438, using the ATNF Mopra radio telescope. Our scans largely cover the optical extent of the galaxies and the stripped H  i cloud west of the Phoenix dwarf. Apart from a tentative but non-significant emission peak at one position in the Phoenix dwarf, no significant emission was detected in the CO spectra of these galaxies. For a velocity width of 6 km s−1, we derive 4σ upper limits of 0.03, 0.04 and 0.06 K km s−1 for IC 5152, the Phoenix dwarf and UGCA 438, respectively. This is an improvement of over a factor of 10 compared with previous observations of IC 5152; the other two galaxies had not yet been observed at millimetre wavelengths. Assuming a Galactic CO-to-H2 conversion factor, we derive upper limits on the molecular gas mass of  6.2 × 104, 3.7 × 103  and  1.4 × 105 M  for IC 5152, the Phoenix dwarf and UGCA 438, respectively. We investigate two possible causes for the lack of CO emission in these galaxies. On the one hand, there may be a genuine lack of molecular gas in these systems, in spite of the presence of large amounts of neutral gas. However, in the case of IC 5152 which is actively forming stars, molecular gas is at least expected to be present in the star-forming regions. On the other hand, there may be a large increase in the CO-to-H2 conversion factor in very low-metallicity dwarfs  (−2 ≤[Fe/H]≤−1)  , making CO a poor tracer of the molecular gas content in dwarf galaxies.  相似文献   

6.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

7.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

8.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

9.
Photometric redshifts are used to determine the rest-frame luminosity function (LF) of both early- and late-type galaxies to  MB∼−17.6  for the cluster Cl 1601+42 at  z=0.54  . The total LF shows a steep faint-end slope   α ∼−1.4  , indicating the existence of a population of numerous dwarf galaxies. Luminous galaxies, with  MB≲−19.5  are mostly red, early-type galaxies, with a LF best described by a Gaussian. Faint galaxies are predominantly blue, late-type galaxies, well fitted by a Schechter function with   α ∼−1.7  . Compared with clusters at lower redshift, the steepening of the faint end starts at brighter magnitudes for Cl 1601+42, which may indicate a brightening of the present-day dwarf population relative to the giant population with increasing redshift. Early-type galaxies are centrally concentrated, and dominate the core region, implying that the radial gradient of early-type galaxies seen in local clusters is already established at  z∼0.5  . Bright, late-type galaxies are rare, consistent with a decrease in star formation in field galaxies as they are accreted on to the cluster, while faint, blue galaxies are evenly distributed across the cluster, except for a depletion in the core region. The blue fraction is  fB∼0.15  , which is somewhat lower than the Butcher–Oemler average at  z∼0.5  . The value of f B is found to increase with limiting magnitude and with radius from the centre.  相似文献   

10.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

11.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

12.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

13.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

14.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

15.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

16.
We present intermediate-resolution spectroscopic data for a set of dwarf and giant galaxies in the Coma cluster, with  −20.6 < MR < −15.7.  The photometric and kinematic properties of the brighter galaxies can be cast in terms of parameters which present little scatter with respect to a set of scaling relations known as the fundamental plane. To determine the form of these fundamental scaling relations at lower luminosities, we have measured velocity dispersions for a sample comprising 69 galaxies on the border of the dwarf and giant regime. Combining these data with our photometric survey, we find a tight correlation of luminosity and velocity dispersion,   L ∝σ2.0  , substantially flatter than the Faber–Jackson relation characterizing giant elliptical galaxies. In addition, the variation of mass-to-light ( M / L ) ratio with velocity dispersion is quite weak in our dwarf sample:   M / L ∝σ0.2.  Our overall results are consistent with theoretical models invoking large-scale mass removal and subsequent structural readjustment, e.g. as a result of galactic winds.  相似文献   

17.
Deep inside the core of Abell 1795: the Chandra view   总被引:1,自引:0,他引:1  
We present X-ray spatial and spectral analysis of the Chandra data from the central     of the cluster of galaxies Abell 1795. The plasma temperature rises outwards by a factor of 3, whereas the iron abundance decreases by a factor of 4. The spatial distribution of oxygen, neon, sulphur, silicon and iron shows that supernovae Type Ia dominate the metal enrichment process of the cluster plasma within the inner 150 kpc. Resolving both the gas density and temperature in nine radial bins, we recover the gravitational mass density profile and show that it flattens within 100 kpc as   ρ DM∝ r -0.6  with a power-law index flatter than −1 at >3 σ level. The observed motion of the central galaxy and the presence of excesses and deficits along the north–south direction in the brightness distribution indicate that the central cluster region is not relaxed. In the absence of any non-gravitational heating source, the data from the inner ∼200 kpc indicate the presence of a cooling flow with an integrated mass deposition rate of about 100 M yr−1. Over the same cluster region, the observed rate of 74 M yr−1 is consistent with the recent XMM-Newton Reflection Grating Spectrometer limit of 150 M yr−1.  相似文献   

18.
We perform a spectrophotometric analysis of galaxies at redshifts z = 4–6 in cosmological smoothed particle hydrodynamics simulations of a Λ cold dark matter universe. Our models include radiative cooling and heating by a uniform ultraviolet (UV) background, star formation, supernova feedback, and a phenomenological model for galactic winds. Analysing a series of simulations of varying box size and particle number allows us to isolate the impact of numerical resolution on our results. Specifically, we determine the luminosity functions in B , V , R , i ' and z ' filters, and compare the results with observational surveys of Lyman break galaxies (LBGs) performed with the Subaru telescope and the Hubble Space Telescope . We find that the simulated galaxies have UV colours consistent with observations and fall in the expected region of the colour–colour diagrams used by the Subaru group. The stellar masses of the most massive galaxies in our largest simulation increase their stellar mass from   M ∼ 1011 M  at z = 6 to   M ∼ 1011.7 M  at z = 3. Assuming a uniform extinction of E ( B − V ) = 0.15, we also find reasonable agreement between simulations and observations in the space density of UV bright galaxies at z = 3–6, down to the magnitude limit of each survey. For the same moderate extinction level of E ( B − V ) ∼ 0.15, the simulated luminosity functions match observational data, but have a steep faint-end slope with α∼−2.0. We discuss the implications of the steep faint-end slope found in the simulations. Our results confirm the generic conclusion from earlier numerical studies that UV bright LBGs at z ≥ 3 are the most massive galaxies with E ( B − V ) ∼ 0.15 at each epoch.  相似文献   

19.
We present optical and infrared broad-band images, radio maps, and optical spectroscopy for the nuclear region of a sample of nearby galaxies. The galaxies have been drawn from a complete volume-limited sample for which we have already presented X-ray imaging. We modelled the stellar component of the spectroscopic observations to determine the star formation history of our targets. Diagnostic diagrams were used to classify the emission-line spectra and determine the ionizing mechanism driving the nuclear regions. All those sources classified as active galactic nuclei present small Eddington ratios  (∼10−3–10−6)  , implying a very slow growth rate of their black holes. We finally investigate the relative numbers of active and normal nuclei as a function of host galaxy luminosity and find that the fraction of active galaxies slowly rises as a function of host absolute magnitude in the   M B ∼−12  to −22 range.  相似文献   

20.
With the help of a statistical parameter derived from optical spectra, we show that the current star formation rate of a galaxy, falling into a cluster along a supercluster filament, is likely to undergo a sudden enhancement before the galaxy reaches the virial radius of the cluster. From a sample of 52 supercluster-scale filaments of galaxies joining a pair of rich clusters of galaxies within the two-degree Field Redshift Survey region, we find a significant enhancement of star formation, within a narrow range between ∼2 and  3  h −170 Mpc  of the centre of the cluster into which the galaxy is falling. This burst of star formation is almost exclusively seen in the fainter dwarf galaxies  ( M B ≥−20)  . The relative position of the peak does not depend on whether the galaxy is a member of a group or not, but non-group galaxies have on average a higher rate of star formation immediately before falling into a cluster. From the various trends, we conclude that the predominant process responsible for this rapid burst is the close interaction with other galaxies falling into the cluster along the same filament, if the interaction occurs before the gas reservoir of the galaxy gets stripped off due to the interaction with the intracluster medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号