首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
青藏高原湖泊面积动态变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
为了探究整个青藏高原湖泊总面积变化的原因,本文利用RS和GIS技术,提取了1960 s—2015年青藏高原大于1 km2的湖泊数据,分析了近50年来青藏高原湖泊面积的动态变化,并结合相应的气象数据,通过相关性分析及回归分析等方法分析了影响湖泊面积变化的主要气象因子。结果表明:(1)青藏高原整体变暖湿的过程中大于1 km2湖泊的总面积呈现增长-减少-加速增长的趋势,从1960 s—2015年共增长了9138.60 km2,增长率为23.90%;(2)100~500 km2级别的湖泊总面积占青藏高原湖泊总面积的比重最大,各不同等级的湖泊总面积总体呈上升趋势;(3)青藏高原4500~5000 m海拔范围内的湖泊总面积最大,海拔4500~5000 m及海拔3000 m以下的湖泊面积变化较剧烈,呈现波动中增长的趋势,其余海拔范围内的湖泊面积基本维持稳定;(4)青藏高原西部地区和北部地区的湖泊总面积总体上呈现增长趋势,东部及南部地区湖泊总面积基本维持稳定,整个青藏高原湖泊面积变化的区域在空间上呈现扩张趋势;(5)年平均气温、年降水量及年蒸发量与湖泊面积呈现显著的相关性,研究区边缘地区湖泊面积和年平均气温有显著相关性,研究区中部地区湖泊面积同年平均气温、年降水量及年蒸发量有显著相关性,而研究区东北部及中西部部分地区湖泊面积和年平均气温及年蒸发量有显著相关性。通过气象因子与湖泊总面积的回归分析结果表明,年平均气温和年蒸发量变化是导致青藏高原湖泊总面积改变的主要原因。本研究填补了青藏高原长时间序列和多尺度的湖泊面积动态变化方面的空白,同时本研究得出的湖泊数据可以为其他研究人员提供一定的帮助。  相似文献   

2.
中全新世以来查干淖尔古湖面波动   总被引:1,自引:0,他引:1  
刘美萍  哈斯 《中国沙漠》2015,(2):306-312
内陆湖泊水位变化是对区域气候和水文变化的一种响应,古湖岸堤是过去湖泊水位变化的最直接证据。野外考察发现内蒙古高原查干淖尔湖周围存在海拔为1 026、1 023m和1 018m的3级古湖岸堤。根据光释光定年,其形成年代分别是6.83±0.37、4.26±0.29ka BP和2.42±0.15ka BP。利用DEM模型恢复得到的对应时期古湖面积分别是270、230km2和120km2。在6.83~4.26ka BP时段,查干淖尔古湖高湖面稳定在1 023~1 026m,比现代湖面约高7m,该时段气候相对湿润,4.26ka BP以来湖面持续下降,与区域性甚至全球性气候变化有着深刻的关系。  相似文献   

3.
青藏高原湖泊对气候波动表现出高度的敏感性,其动态监测数据为区域甚至全球气候变化研究提供重要证据。受恶劣自然环境的限制,青藏高原大部分地区缺乏实地观测数据,现有的青藏高原湖泊变化分析,多基于遥感,湖泊水位与面积等数据通常来自不同卫星,数据之间存在时间上的偏离。本研究融合Sentinel-3 SRAL (SAR Radar Altimeter)雷达测高数据与相同卫星搭载的Sentinel-3 SLSTR (Sea and Land Surface Temperature Radiometer)光学影像监测了2016年4月—2022年9月青藏高原四个大型湖泊(阿牙克库木湖、色林错、青海湖、纳木错)的水位及面积变化。通过将监测结果与实测水位及与DAHITI水文产品对比分析,确认Sentinel-3雷达测高数据能够准确地反映高原大型湖泊水位的周际和月际变化特征。结果表明:(1)四个湖泊的水位在监测期内逐年上升,分别上涨了3.01 m、2.04 m、1.62 m、0.28 m。四个湖泊的面积与水位季节变化特征一般表现为:夏季季风期湖面显著增大,非季风期逐渐减小。(2)湖泊水位在第二季度最低,第三季...  相似文献   

4.
中国山地范围界定的初步意见   总被引:8,自引:1,他引:7  
江晓波 《山地学报》2008,26(2):129-136
中国山地的范围一直缺乏可操作的、准确的量化方法,从而导致对山地及其内部资源、环境、人口和发展问题认识的不全面.同时,准确界定山地范围是实施数字山地战略的一项基础性工作.在前人研究的基础上,采用两种方案确定中国山地范围.方案一:将满足以下两种情况的国土界定为山地,1)海拔≥3 000 m;2)海拔≥1300~3 000 m,同时相对高差>200 m或坡度>25°.根据此标准计算,中国山地面积为4 000 265 km2,占中国陆地面积的41.67%.方案二:根据UNEP-WCMC的标准,将满足下述情况的国土定义为山地,1)海拔≥2 500 m;2)海拔≥1 500~2 500 m,坡度≥2°;3)海拔≥1 000~1 500 m,坡度≥5°或相对高差≥300 m;4)海拔≥300~1 000 m,相对高差≥300 m.根据此标准计算,中国山地面积为4 426 130 km2占中国陆地面积的46.11%.按两种方法计算所得的分省山地面积中,前5名都是西藏、青海、新疆、四川和云南.将两种方案计算的山地面积按高程划分为六级:①300~1 000 m(含300 m),②1 000~1 500 m(含1 000 m),③1 500~2 500 m(含1 500 m),④2 500~3 500 m(含2 500 m),⑤3 500~4 500 m(含3 500 m),⑥≥4 500 m.根据两种方案的定义,海拔3 500 m以上的山地面积相等;除了方案-在300~1 000 m间山地较方案二多324 508 km2外,其余几个级别山地的面积均为方案二大于方案-的山地面积,其中2 500~3 500 m间多133 432 km2,1 500~2 500 m间多336 186 km2,1 000~1 500 m间多282 273 km2.  相似文献   

5.
被誉为高原明珠的泸沽湖位于青藏高原东部、川滇之间的万山丛中,为川滇两省共有,属四川省盐源县和云南省宁蒗县管辖。泸沽湖呈近圆形,水面面积大于50 km2,其中四川境内约占总面积的2/3,云南约占总面积的1/3。该湖为高原淡水湖泊,由地质构造运动形成的断裂下陷作用形成;湖面海拔大于2 680 m,平均水深约40 m,系深水湖泊;湖的基底是二叠系火山岩,湖中央残山由二叠系玄武岩构成,湖滨山脉由二叠系玄武岩和下二叠统-石炭系碳酸盐岩等岩石构成,湖周围山上喀斯特洞穴发育。湖水的补给主要来自大气降水(雨、雪等),其次为少量地表水及喀斯特地下水。封面照片:泸沽湖@山水  相似文献   

6.
青藏高原位于中国西南部、亚洲中部,平均海拔高程大于4000 m,面积约300万km2,是“世界屋脊”,与周边地区一起常被称为地球的“第三极”。青藏高原分布着约1200个面积大于1 km2的湖泊,占中国湖泊数量与面积的一半;同时也是黄河、长江、恒河、印度河等大河的源头,被称为“亚洲水塔”。近几十年来,在全球变暖的背景下,青藏高原升温更加突出,其能量与水循环发生了显著变化,气候趋于暖湿化,冰川加速消融,湖面水位上升。湖泊是气候变化的重要指标,青藏高原湖泊分布密集、人为活动影响较小,多源遥感数据的广泛应用,为监测高原湖泊变化提供了难得的契机。本文依托国家自然科学基金青年项目“基于多源遥感的青藏高原内流区湖泊水量变化及水体相态转换研究(2000-2009年)”,主要研究进展为:初步查明了西藏高原的湖泊数量、面积及水位变化与时空格局,以及湖泊水量变化与水量平衡;探讨了湖泊变化对气候变化的响应。目前对青藏高原湖泊的变化及驱动因素虽有一些认识,但其定量的水量平衡及驱动机制还有待于进一步研究。这对了解世界第三极、一带一路国家和地区水资源状况与变化、生态文明和生态安全屏障建设具有重要的意义,同时也可为第三极国家公园的建立提供重要的科学基础。  相似文献   

7.
40 kaBP来亚非季风演化趋势及青藏高原泛湖期   总被引:8,自引:1,他引:7  
基于18个黄土/古土壤序列 (黄土高原与青藏高原) 与27个湖泊沉积序列 (青藏高原、新疆、云南与赤道非洲及其以北的非洲季风区) 对比分析了东亚季风区、印度季风区与非洲季风区40 ka以来的区域环境演变特征。结果显示:上述区域在对应岁差周期的高太阳辐射阶段,也就是40~24 kaBP与14~4 kaBP分别经历了一次环境湿润期,而在末次冰期最盛期,除中国云南、青藏高原及新疆部分地区外,其他地区则较为干燥。青藏高原及其北侧的新疆区,40~24 kaBP比14~4 kaBP气候更为湿润,湖泊呈现40 ka以来的最高最大湖面,高原进入一次泛湖期。而非洲区及黄土高原,则与此相反;14~4 kaBP气候比40~24 kaBP更为湿润、适宜,湖面更高,成壤作用更强。40~24 kaBP,印度季风强盛,加强了对高原的水汽与潜热输送,同时,由于北方冰盖的存在,西风气流则相对南移,增加了对高原的影响,两种气流交互作用引起的强降水,可能是造成湖泊显著扩张的主要原因。  相似文献   

8.
世界“屋脊”青藏高原,面积约230万平方千米,由羌塘(藏北高原)、青海高原、祁连山地、集达木盆地、藏南谷地和川藏高山峡谷等地形区组成。其中羌塘高原是青藏高原的核心部分,被称为“高原上的高原”,它地势高充,平均海拔4500束以上、草木罕生。“羌塘”藏语意为“北方荒原”。羌塘高原面积约168万平方千米,大致相当于17个浙江省的面积。  相似文献   

9.
浪错          下载免费PDF全文
正浪错,位于西藏自治区日喀则昂仁县东南部,雅鲁藏布江北岸,地理坐标29°11′28″~29°12′40″N,87°22′16″~87°25′15″E;219新藏线自湖北岸经过,交通便利。湖盆四面环山,海拔在4 500~4 800 m之间,湖岸陡峭,是发育于雅鲁藏布江断裂带上的构造湖。湖面海拔约4 300 m,长轴呈东西向展布,长约6 900 m,最大宽度2 300 m,湖水面积约12 km2。湖区受高原大陆性气候控制,降水稀少,寒冷干旱,  相似文献   

10.
阿尔金山依协克帕提湖畔黑颈鹤观察初报   总被引:2,自引:0,他引:2  
一、概况依协克帕提湖位于我国最大的自然保护区——阿尔金山保护区的东部,即东昆仑山的北支祁曼塔格山脚下的凹陷盆地东缘,其范围为:37°15′—37°23′N,90°11′~90°20′E。该区域属藏北羌塘高原的延伸部分,在景观上具有中亚荒漠向青藏高原过渡的特征。依协克帕提湖为淡水湖泊(阿尔金山保护区中90%的湖泊为咸水湖泊),海拔3900m。湖泊面积约15km~2,平均水深1~3m。湖泊南端宽圆,北部细长,整个形状象一只向南游动的蝌蚪。湖东为砾  相似文献   

11.
青藏高原气温空间分布规律及其生态意义   总被引:6,自引:1,他引:5  
姚永慧  张百平 《地理研究》2015,34(11):2084-2094
作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。  相似文献   

12.
高原湖泊对气候变化极为敏感,通过湖泊变化能够真实地反映气候变化状况。在地理信息系统和遥感技术支持下,基于多源、多时相的数字遥感影像、地形图和DEM数据,并结合其他相关研究文献资料,对乌兰乌拉湖37 a来湖泊面积变化及其与自然要素(气温、降水量等)之间的关系进行了研究,并从湖泊补给的构成角度分析了其变化原因。结果表明,自1976~2012年期间,乌兰乌拉湖范围总体上有所扩张,期间经历了先萎缩、后扩张的过程。1976年乌兰乌拉湖的面积为555.97 km2,1994年其面积为496.50 km2,这期间湖泊在逐年萎缩,递减幅度为3.12 km2/a;从1998年开始,湖泊面积开始迅速扩大,1998年湖泊面积为499.83 km2,到2012年湖泊面积达655.25 km2,扩张速率为10.36 km2/a。乌兰乌拉湖水域面积变化主要集中在湖的南部河流入湖口处。1976~2012年期间,乌兰乌拉湖流域的年降水量增加,年平均气温升高。1998年以来,乌兰乌拉湖水域面积扩张的原因有二:年降水量增加;年平均气温升高导致冻融水量增加。在湖泊主要年补给水量构成中,湖面年降水量、流域年降水径流量、冻融水年补给量分别约占23.3%、43.7%和33.0%。  相似文献   

13.
未来气候变暖情形下青藏高原多年冻土分布初探   总被引:4,自引:0,他引:4  
基于未来温室气体中等排放情景下气候模式给出的气候预测结果的高分辨率降尺度分析结果,运用两种方法(年均温法和高程模型法)模拟了1980-1999,2030-2049和2080-2099年3个时段青藏高原多年冻土分布.结果表明,以年均地温-1℃作为多年冻土划分依据的年均温法模拟的目前(1980-1999年)高原多年冻土面积为127.99万km2,与世界数据中心给出的青藏高原现代多年冻土面积为129.12万km2的估算接近(误差率仅为0.86%);到本世纪中期(2030-2049年),高原多年冻土面积减少为87.26万km2,退化率达到31.82%;而到本世纪末(2080-2099年),高原多年冻土面积只有69.25万km2,较目前将退化45.89%.不同高度带的对比分析还发现,与高原及其邻近地区年均气温的升高一般随海拔高度而增加的趋势相反,未来高原多年冻土的退化率将随着海拔高度增加而降低.在全球变暖过程中的冻土退化,特别是高原东南部冻土向西北部的逐步退缩,对高原冻土区工程稳定性的影响应引起我们的足够重视.  相似文献   

14.
再论青藏高原范围   总被引:5,自引:0,他引:5  
张镱锂  李炳元  刘林山  郑度 《地理研究》2021,40(6):1543-1553
伴随青藏高原研究的深入,高原内外多学科研究程度和认识的提高,及地理大数据、地球观测科学和技术的进步,对青藏高原范围提出了新的要求。本研究系统论述了确定青藏高原范围的原则、依据和方法,分析探讨了高原地貌宏观结构(高原面、高原内低盆地与高原边缘河谷低地等)和周围边界各自然地段构成的基本特征。采用ArcMap软件,通过遥感影像和DEM数据及新资料对高原地貌比较研究,实现了1:100万比例尺地图精度的青藏高原范围的界定。研究表明,青藏高原北起西昆仑山-祁连山山脉北麓,南抵喜马拉雅山等山脉南麓,南北最宽达1560 km;西自兴都库什山脉和帕米尔高原西缘,东抵横断山等山脉东缘,东西最长约3360 km;范围为25°59′30″N~40°1′0″N、67°40′37″E~104°40′57″E,总面积为308.34万km2,平均海拔约4320 m。在行政区域上,青藏高原分布于中国、印度、巴基斯坦、塔吉克斯坦、阿富汗、尼泊尔、不丹、缅甸、吉尔吉斯斯坦等9个国家。其中中国境内的青藏高原面积约258.09万km2(占高原总面积的83.7%),平均海拔约4400 m,分布在西藏、青海、甘肃、四川、云南和新疆等6省区,西藏和青海两省区主体分布在高原范围内(约占高原总面积的60.6%)。  相似文献   

15.
根据美国国家冰雪数据中心(NSIDC)发布的2012年全球冰川分布数据等资料,选取青藏高原冰川分布较集中的地区作为研究区,利用1995年、2005年和2015年3个时期Landsat TM/ETM+/OLI遥感影像数据和研究区附近气象站的气象资料,综合利用"3S"技术和统计分析方法等,研究3个时期研究区内湖泊面积与数量及其变化,从气候要素变化与冰川退缩角度分析其驱动因素。研究结果表明,3个时期研究区冰川补给型湖泊整体呈扩张态势,1995年、2005年和2015年的冰川补给型湖泊面积分别为10700.5 km~2、11910.7 km~2和12518.3 km~2;与1995年相比,2005年的湖泊数量增加了2 041个,与2005年相比,2015年的湖泊数量增加了21个;分布在研究区各流域中的冰川补给型湖泊变化状况不同,分布在羌塘高原上的湖泊扩张幅度大,分布在柴达木盆地中的湖泊呈缓慢扩张态势,分布在研究区南部雅鲁藏布江流域中的湖泊相对稳定,还有一些湖泊在萎缩。随着海拔的增加,研究区中的湖泊数量和面积都呈现类似正态分布的特征。1995~2015年期间,冰川退缩和气温上升是导致青藏高原冰川补给型湖泊面积和数量变化的主要原因。  相似文献   

16.
青藏高原增温效应对垂直带谱的影响   总被引:2,自引:0,他引:2  
青藏高原作为巨大的热源对亚洲气候、高原生态格局等产生重要的影响。但青藏高原的增温效应最初是20世纪50年代因其对亚洲气候的重大影响而被发现的,因此,大量的相关研究主要集中在高原夏季增温对气候的影响方面,而高原增温效应对高原地理生态格局的影响研究却非常少。利用收集到的气象台站观测数据、基于MODIS地表温度估算的青藏高原气温数据、林线数据和垂直带谱数据及DEM数据,通过对比分析高原内部与外围山区垂直带谱高度的变化及林线的分布规律,并以高原内部与边缘地区相同海拔高度上的气温差、最热月10℃等温线、15℃·月的温暖指数等温度指标来定量描述高原的增温效应及其对垂直带谱和林线的影响。研究结果表明:1由于青藏高原增温效应的影响,高原内部气温和生长季长度高于边缘地区,相同海拔高度上,高原内部各月气温比边缘地区高2~7℃;在4500 m高度上,高原内部各月气温比四川盆地高3.58℃(4月)到6.63℃(6月);最热月10℃等温线的海拔高度也从东部边缘(4000 m以下)向内部逐渐升高,在拉萨-改则一带则可出现在4600~5000 m的高度;15℃·月的温暖指数的海拔高度也从边缘向内部逐渐升高,在4500 m的海拔高度上,横断山区、高原南部和中部地区的温暖指数均能达到15℃·月以上,而其它边缘地区则都低于15℃·月。2青藏高原垂直带谱和林线的分布规律与增温效应的规律极其一致,即均从东部边缘向内部逐渐升高,表明增温效应抬升了高原内部垂直带谱的分布范围和高度:山地暗针叶林带的分布范围在高原内部比东部边缘地区高1000~1500 m;山地草甸带的分布范围在高原内部比东部边缘高出700~900 m;高原内部林线比外围地区高500~1000 m左右。最热月10℃等温线和15℃·月温暖指数的分布规律与林线分布规律一致,表明高原增温效应对垂直带谱的分布具有重要的影响。  相似文献   

17.
2010~2011年,采用"3S"技术与地面调查相结合的方法,对西藏湿地进行了调查、研究。结果显示,西藏分布有4类17型湿地,湿地总面积为65 290.289 4 km2,其中,河流湿地、湖泊湿地、沼泽湿地和人工湿地的面积分别为14 345.632 7 km2(21.97%)、30 352.004 1 km2(46.49%)、20 542.550 3 km2(31.46%)和50.102 3 km2(0.08%);那曲地区的湿地面积最大,阿里地区、日喀则市、山南地区、拉萨市、林芝市和昌都市的湿地面积依次减小;阿里地区的湿地型多样性和均匀性最高;各地区(市)间的河流湿地的面积差异显著,各地区(市)间的永久性河流、洪泛平原、永久性淡水湖泊、草本沼泽、地热湿地的面积差异显著。西藏湿地以总面积大和湿地型多样性高为特征,且湿地在各地区分布不均,但部分类型湿地的面积有差异。决定西藏湿地不均衡性的关键是湖泊湿地和沼泽湿地的空间分布及其面积。  相似文献   

18.
湖泊岸线形态是描述和定量表达湖泊空间分布特征的重要维度。近年来,受气候暖湿化影响,青藏高原内流区湖泊总体呈现快速扩张趋势,湖泊的动态变化不仅体现在面积、水位、水量等水文参数上,还引起湖泊形态的显著变化。基于多期湖泊分布数据,结合分形和景观生态学理论,构建了湖泊岸线形态特征量化的指标体系,对1990年以来,青藏高原内流区湖泊岸线形态的时空变化特征及其影响因素进行定量分析。结果表明:① 近三十年来青藏高原内流区湖泊的分形维数和岸线发育系数总体呈上升趋势,湖泊的近圆率在此期间呈下降趋势,湖泊长宽比指数则无明显变化。② 青藏高原内流区湖泊岸线形态的总体演变特征受到地质构造的控制,体现出一定空间自相关性,断陷湖区的湖泊岸线形态及其变化要明显复杂于坳陷湖区。区域湖泊岸线的变化幅度大致从东北向西南递减,变化幅度在可可西里地区、羌塘高原中部以及羌塘高原东南部3个区域存在空间自相关性。③ 湖泊岸线形态的变化受岸线周边的地形影响,湖滨地形落差较大的区域,湖泊岸线相对稳定,变化速度较慢。岸线指数的变化量与岸线周边1 km缓冲区内的平均高差存在幂函数关系。④ 该区域湖泊岸线形态的变化和湖泊面积的变化幅度也存在一定相关性,当湖泊处于扩张阶段时,湖泊的分形维数和岸线发育系数总体呈现增加趋势,反之减少。本研究揭示了气候暖湿化背景下青藏高原内流区湖泊岸线形态的变化格局与影响特征,讨论了湖泊岸线形态及其变化格局与湖区的地质构造,气候与水文等多个要素间的关系,丰富了湖泊动态变化研究的视角与方法,为深入理解青藏高原湖泊对气候变化的响应特征,监测湖泊变化对湖盆地貌、水系连通度以及湖滨带生态环境等影响提供了科学参考。  相似文献   

19.
基于MODIS数据的青藏高原气温与增温效应估算   总被引:12,自引:2,他引:10  
姚永慧  张百平 《地理学报》2013,68(1):95-107
利用2001-2007 年MODIS地表温度数据、137 个气象观测台站数据和ASTERGDEM数据, 采用普通线性回归分析方法(OLS)及地理加权回归分析方法(GWR), 研究了高原月均地表温度与气温的相关关系, 最终选择精度较高的GWR分析方法, 建立了高原气温与地表温度、海拔高度的回归模型。各月气温GWR回归模型的决定系数(Adjusted R2) 都达到了0.91 以上(0.91~0.95), 标准误差(RMSE) 介于1.16~1.58℃;约70%以上的台站各月残差介于-1.5~1.5℃之间, 80%以上的台站的残差介于-2~2℃之间。根据该模型, 估算了青藏高原气温, 并在此基础上, 将高原及周边地区7 月份月均气温转换到4500 m和5000 m海拔高度上, 对比分析高原内部相对于外围地区的增温效应。研究结果表明:(1) 利用GWR方法, 结合地面台站的观测数据和MODIS Ts、DEM等, 对高原气温估算的精度高于以往普通回归分析模型估算的精度(RMSE=2~3℃), 精度可以提高到1.58℃;(2) 高原夏半年海拔5000 m左右的高山区气温能达到0℃以上, 尤其是7 月份, 海拔4000~5500 m的高山区的气温仍能达到10℃左右, 为山地森林的发育提供了温度条件, 使高原成为北半球林线分布最高的地方;(3) 高原的增温效应非常突出, 初步估算, 在相同的海拔高度上高原内部气温要比外围地区高6~10℃。  相似文献   

20.
根据羌塘高原冰川系统测量雪线高度(ELAh)与冰川平均高度(Hm e)之间存在较好的线性关系,计算了其所有冰川的雪线高度ELAhc。量算的ELAh与计算的ELAhc十分接近,整个羌塘高原的差值(ELAh-ELAhc)平均仅为0.16 m,说明采用这种方法计算的雪线高度ELAhc是可信的。通过对比发现:在编绘雪线高度场时,将冰川系统内相邻冰川分组平均而生成的雪线场克服了地形雪线的影响,比未进行分组平均的雪线场更为美观整洁,规律性也很明显。羌塘高原冰川系统雪线场分布具有如下特征:(1)从南向北,雪线逐渐降低;(2)从东到西,雪线随之升高。从总体上来看,羌塘高原雪线从西南向东北逐渐降低的趋势,但变幅不大,多数在5 700 m以上,但最高值不在气温最高的南部或降水最少的西北部,而在隆格尔山,高达6 000 m以上,不仅是本区和青藏高原内陆水系雪线最高的,也是迄今所知北半球最高雪线所在地。其次分别为波波嘎屋峰、土则岗日和藏色岗日附近,最低值在金阳岗日附近,这是本区降水量从东南向西北减少、气温由南向北降低对雪线综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号