首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present the analysis of three-colour optical/near-infrared images, in IJK , taken for the DEep Near Infrared Southern Sky Survey (DENIS) project. The region considered covers 17.4 deg2 and lies within <5°, b <1.°5. The adopted methods for deriving photometry and astrometry in these crowded images, together with an analysis of the deficiencies nevertheless remaining, are presented. The numbers of objects extracted in I , J and K are 748 000, 851 000 and 659 000 respectively, to magnitude limits of 17, 15 and 13. Eighty per cent completeness levels typically fall at magnitudes 16, 13 and 10 respectively, fainter by about 2 mag than the usual DENIS limits as a result of the crowded nature of these fields. A simple model to describe the disc contribution to the number counts is constructed, and parameters for the dust layer are derived. We find that a formal fit of parameters for the dust plane, from these data in limited directions, gives a scalelength and scaleheight of 3.4±1.0 kpc and 40±5 pc respectively, and a solar position 14.0±2.5 pc below the plane. This latter value is likely to be affected by localized dust asymmetries. We convolve a detailed model of the systematic and random errors in the photometry with a simple model of the Galactic disc and dust distribution to simulate expected colourmagnitude diagrams. These are in good agreement with the observed diagrams, allowing us to isolate those stars from the inner disc and bulge. After correcting for local dust-induced asymmetries, we find evidence for longitude-dependent asymmetries in the distant J and K sources, consistent with the general predictions of some Galactic bar models. We consider complementary L -band observations in the companion paper.  相似文献   

2.
The halo structure at high Galactic latitudes near both the north and south poles is studied using Sloan Digital Sky Survey (SDSS) and SuperCOSMOS data. For the south cap halo, the archive of the SuperCOSMOS photographic photometry sky survey is used. The coincident source rate between SuperCOSMOS data in B J band from 16.5 to 20.5 mag and SDSS data is about 92 per cent, in a common sky area in the south. While that in the R F band is about 85 per cent from 16.5 to 19.5 mag. Transformed to the SuperCOSMOS system and downgraded to the limiting magnitudes of SuperCOSMOS, the star counts in the North Galactic Cap from SDSS show up to an  16.9 ± 6.3  per cent  asymmetric ratio (defined as relative fluctuations over the rotational symmetry structure) in the B J band, and up to  13.5 ± 6.7  per cent  asymmetric ratio in the R F band. From SuperCOSMOS B J and R F bands, the structure of the Southern Galactic hemisphere does not show the same obvious asymmetric structures as the northern sky does in both the original and downgraded SDSS star counts. An axisymmetric halo model with n = 2.8 and q = 0.7 can fit the projected number density from SuperCOSMOS fairly well, with an average error of about 9.17 per cent. By careful analysis of the difference of star counts between the downgraded SDSS northern halo data and SuperCOSMOS southern halo data, it is shown that no asymmetry can be detected in the South Galactic Cap at the accuracy of SuperCOSMOS, and the Virgo overdensity is likely a foreign component in the Galactic halo.  相似文献   

3.
A method based on Lucy's iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K -band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10°>| b |>2°, | l |<15°). The top end of the K -band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by López-Corredoira et al., are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M K =−8.0  mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12° in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major–minor axial ratio of the ellipsoids is found not to be constant, the best fit to the gradient being K z =(8.4±1.7)×exp(− t /(2000±920) pc), where t is the distance along the major axis of the ellipsoid in parsecs. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc< t <3000 pc, is calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K z is allowed to vary. From these, the total number of bulge stars is ∼3×1010 or ∼4×1010, respectively.  相似文献   

4.
We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ∼10 arcmin. This is carried out using radio continuum data at 1.4, 2.7 and 5 GHz in the coordinate region     . For this purpose, we evaluate the zero level of the 2.7- and 5-GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero-level corrections are   T zero(2.7 GHz) = 0.15 ± 0.06 K  and   T zero(5 GHz) = 0.1 ± 0.05 K  . We separate the thermal (free–free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index −2.1 for the free–free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for  | b | = 0°  , the fraction of thermal emission reaches a maximum value of 82 per cent, while at 1.4 GHz, the corresponding value is 68 per cent. In addition, for the thermal emission, the analysis indicates a dominant contribution of the diffuse component relative to the source component associated with discrete H  ii regions.  相似文献   

5.
We determine the most likely values of the free parameters of an N -body model for the Galaxy developed by Fux via a discrete–discrete comparison with the positions on the sky and line-of-sight velocities of an unbiased, homogeneous sample of OH/IR stars. Via Monte Carlo simulation, we find the plausibility of the best-fitting models, as well as the errors on the determined values. The parameters that are constrained best by these projected data are the total mass of the model and the viewing angle of the central bar, although the distribution of the latter has multiple maxima. The other two free parameters, the size of the bar and the (azimuthal) velocity of the Sun, are less well-constrained. The best model has a viewing angle of ∼ 44°, a semimajor axis of 2.5 kpc (corotation radius 4.5 kpc, pattern speed 46 km s−1 kpc−1), a bar mass of 1.7×1010 M and a tangential velocity of the local standard of rest of 171 km s−1. We argue that the lower values that are commonly found from stellar data for the viewing angle (∼25°) arise when too few coordinates are available, when the longitude range is too narrow or when low latitudes are excluded from the fit. The new constraints on the viewing angle of the Galactic bar from stellar line-of-sight velocities decrease further the ability of the distribution of the bar to account for the observed microlensing optical depth toward Baade's window: our model reproduces only half the observed value. The signal of triaxiality diminishes quickly with increasing latitude, fading within approximately 1 scaleheight (≲3°). This suggests that Baade's window is not a very appropriate region in which to sample bar properties.  相似文献   

6.
We present the multiwavelength properties and catalogue of the 15 μm and 1.4 GHz radio sources detected in the European Large Area ISO Survey ( ELAIS ) areas N1 and N2. Using the optical data from the Wide Field Survey we use a likelihood ratio method to search for the counterparts of the 1056 and 691 sources detected at 15 μm and 1.4 GHz, respectively, down to flux limits of   S 15= 0.5 mJy  and   S 1.4 GHz= 0.135 mJy  . We find that ∼92 per cent of the 15 μm ELAIS sources have an optical counterpart down to   r '= 24  . All mid-infrared (IR) sources with fluxes   S 15≥ 3 mJy  have an optical counterpart. The magnitude distribution of the sources shows a well-defined peak at relatively bright magnitudes   r '∼ 18  . The mid-IR-to-optical and radio-to-optical flux diagrams are presented and discussed in terms of actual galaxy models. About 15 per cent of the sources are bright galactic stars; of the extragalactic objects ∼65 per cent are compatible with being normal or starburst galaxies and ∼25 per cent active galactic nuclei (AGNs). Objects with mid-IR-to-optical fluxes larger than 100 are found, comprising ∼20 per cent of the sample. We suggest that that these sources are highly obscured luminous and ultraluminous starburst galaxies and AGNs.  相似文献   

7.
We present high-resolution Utrecht Echelle Spectrograph spectra of the quasar PHL 957, obtained in order to study the foreground damped Lyα (DLA) galaxy at z =2.309. Measurements of absorption lines lead to accurate abundance determinations of Fe, S and N which complement measurements of Zn, Cr and Ni already available for this system. We find [Fe/H]=−2.0±0.1, [S/H]=−1.54±0.06 and [N/H]=−2.76±0.07. The ratio [Fe/Zn]=−0.44 provides evidence that ≈74 per cent of iron and ≈28 per cent of zinc are locked into dust grains with a dust-to-gas ratio of ≈3 per cent of the Galactic one. The total iron content in both gas and dust in the DLA system is [Fe/H]=−1.4. This confirms a rather low metallicity in the galaxy, which is in the early stages of its chemical evolution. The detection of S ii allows us to measure the S ii /Zn ii ratio, which is a unique diagnostic tool for tracing back its chemical history, since it is not affected by the presence of dust. Surprisingly, the resulting relative abundance is [S/Zn]=0.0±0.1, at variance with the overabundance found in the Galactic halo stars with similar metallicity. We emphasize that the [S/Zn] ratio is solar in all the three DLA absorbers with extant data. Upper limits are also found for Mn, Mg, O and P and, once the dust depletion is accounted for, we obtain [Mg/Fe]c<+0.2, [O/Fe]c<+0.4, [Mn/Fe]c<+0.0 and [P/Fe]c<−0.7. The [α/Fe] values do not support Galactic halo-like abundances, implying that the chemical evolution of this young galaxy is not reproducing the evolution of our own Galaxy.  相似文献   

8.
A by-product of the APM high-redshift quasar survey was the discovery of several distant (20–100 kpc) N-type carbon stars at high galactic latitude. Following on from this, we have started a systematic all-sky survey at galactic latitudes ⊢ b ⊢>30° to find further examples of these rare objects, and we report here on the results from the first season of follow-up spectroscopy. Faint, high-latitude carbon (FHLC) giants make excellent probes of the kinematic structure of the outer Galactic halo. Therefore, in addition to detailed spectrophotometry covering a wide wavelength range, we have obtained high-resolution (∼1 Å) spectra centred on the CN bands at ∼8000 Å, and have derived accurate (≲10 km s−1) radial velocities for the known FHLC stars. From the initial phase of our survey covering ≈6500 deg2, we find a surface density of faint N-type carbon stars in the halo of ≈1 per 200 deg2, roughly a factor of 4 less than the surface density of CH-type carbon stars in the halo. Intermediate-age, N-type carbon stars seem unlikely to have formed in the halo in isolation from other star-forming regions, and one possibility that we are investigating is that they either arise from the disruption of tidally captured dwarf satellite galaxies or are a manifestation of the long-sought optical component of the Magellanic Stream.  相似文献   

9.
The space motions of Mira variables are derived from radial velocities, Hipparcos proper motions and a period–luminosity relation. The previously known dependence of Mira kinematics on the period of pulsation is confirmed and refined. In addition, it is found that Miras with periods in the range 145–200 d in the general Solar neighbourhood have a net radial outward motion from the Galactic Centre of 75±18 km s−1. This, together with a lag behind the circular velocity of Galactic rotation of 98±19 km s−1, is interpreted as evidence for an elongation of their orbits, with their major axes aligned at an angle of ∼17° with the Sun–Galactic Centre line, towards positive Galactic longitudes. This concentration seems to be a continuation to the Solar circle and beyond of the bar-like structure of the Galactic bulge, with the orbits of some local Miras probably penetrating into the bulge. These conclusions are not sensitive to the distance scale adopted. A further analysis is given of the short-period (SP) red group of Miras discussed in companion papers in this series. In Appendix A the mean radial velocities and other data for 842 oxygen-rich Mira-like variables are tabulated. These velocities were derived from published optical and radio observations.  相似文献   

10.
The kinematics of Galactic C-Miras are discussed on the basis of the bolometric magnitudes and radial velocities of Papers I and II of this series. Differential Galactic rotation is used to derive a zero-point for the bolometric period–luminosity relation which is in satisfactory agreement with that inferred from the Large Magellanic Cloud (LMC) C-Miras. We find for the Galactic Miras,   M bol=−2.54 log  P + 2.06(±0.24)  , where the slope is taken from the LMC. The mean velocity dispersion, together with the data of Nordström et al. and the Padova models, leads to a mean age for our sample of C-Miras of  1.8 ± 0.4 Gyr  and a mean initial mass of  1.8 ± 0.2 M  . Evidence for a variation of velocity dispersion with period is found, indicating a dependence of period on age and initial mass, the longer period stars being younger. We discuss the relation between the O- and C-Miras and also their relative numbers in different systems.  相似文献   

11.
We present near-infrared colour–magnitude diagrams and star counts for a number of regions along the Galactic plane. It is shown that along the l =27°, b =0° line of sight there is a feature at 5.7±0.7 kpc with a density of stars at least a factor of 2 and probably more than a factor of 5 times that of the disc at the same position. This feature forms a distinct clump on an H versus J − H diagram and is seen at all longitudes from the bulge to about l =28°, but at no longitude greater than this. The distance to the feature at l =20° is about 0.5 kpc further than at l =27°, and by l =10° it has merged with, or has become, the bulge. Given that at l =27° and l =21° there is also a clustering of very young stars, the only component that can reasonably explain what is seen is a bar with half-length of around 4 kpc and a position angle of about 43°±7°.  相似文献   

12.
Motivated by recent discoveries of nearby galaxies in the Zone of Avoidance (ZOA), we conducted a pilot study of galaxy candidates at low galactic latitude, near galactic longitude l  ∼ 135°, where the Supergalactic plane is crossed by the Galactic plane. We observed with the 1-m Wise Observatory in the l band 17 of the 'promising' candidates identified by visual examination of Palomar red plates by Hau et al. A few candidates were also observed in R or B bands, or had spectroscopic observations performed at the Isaac Newton Telescope and at the Wise Observatory. Our study suggests that there are probably 10 galaxies in this sample. We also identify a probable planetary nebula. The final confirmation of the nature of these sources must await the availability of full spectroscopic information. The success rate of ∼ 50 per cent in identifying galaxies at galactic latitude | b | < 5° indicates that the ZOA is a promising region to discover new galaxies.  相似文献   

13.
We present BVR polarimetric study of the cool active star LO Pegasi (LO Peg) for the first time. LO Peg was found to be highly polarized among the cool active stars. Our observations yield average values of polarization in LO Peg:   PB = 0.387 ± 0.004 per cent, θB= 88°± 1°; PV = 0.351 ± 0.004 per cent, θV= 91°± 1°  and   PR = 0.335 ± 0.003 per cent, θR= 91°± 1°  . Both the degree of polarization and the position angle are found to be variable. The semi-amplitude of the polarization variability in B, V and R bands is found to be  0.18 ± 0.02, 0.13 ± 0.01  and  0.10 ± 0.02  per cent, respectively. We suggest that the levels of polarization observed in LO Peg could be the result of scattering of an anisotropic stellar radiation field by an optically thin circumstellar envelope or scattering of the stellar radiation by prominence-like structures.  相似文献   

14.
We have obtained I -band photometry of the neutron star X-ray transient Aql X-1 during quiescence. We find a periodicity at 2.487 cycles d−1, which we interpret as twice the orbital frequency (19.30±0.05 h). Folding the data on the orbital period, we model the light-curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20°–30° (90 per cent confidence) and also determine the 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 and 50 km s−1, respectively.  相似文献   

15.
We report the results of a near-infrared survey for long-period variables in a field of view of 20× 30 arcmin2 towards the Galactic Centre (GC). We have detected 1364 variables, of which 348 are identified with those reported in Glass et al. We present a catalogue and photometric measurements for the detected variables and discuss their nature. We also establish a method for the simultaneous estimation of distances and extinctions using the period–luminosity relations for the JHK s bands. Our method is applicable to Miras with periods in the range 100–350 d and mean magnitudes available in two or more filter bands. While J band means are often unavailable for our objects because of the large extinction, we estimated distances and extinctions for 143 Miras whose H - and   K s  -band mean magnitudes are obtained. We find that most are located at the same distance to within our accuracy. Assuming that the barycentre of these Miras corresponds to the GC, we estimate its distance modulus to be  14.58 ± 0.02 (stat.) ± 0.11 (syst.) mag  , corresponding to  8.24 ± 0.08 (stat.) ± 0.42 (syst.) kpc  . We have assumed the distance modulus to the Large Magellanic Cloud to be 18.45 mag, and the uncertainty in this quantity is included in the above systematic error. We also discuss the large and highly variable extinction. Its value ranges from 1.5 mag to larger than 4 mag in     except towards the thicker dark nebulae and it varies in a complicated way with the line of sight. We have identified mid-infrared counterparts in the Spitzer /IRAC catalogue of Ramírez et al. for most of our variables and find that they follow rather narrow period–luminosity relations in the 3.6–8.0 μm wavelength range.  相似文献   

16.
We construct a new sample of ∼1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey (SDSS), selected using a reduced proper-motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catalogue of Bramich et al. Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range  30–50 km s−1  . This halo sample is one of the largest constructed to date and the disc contamination is at a level of ≲1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that  (σ r , σφ, σθ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1  . The stellar halo exhibits no net rotation, although the distribution of   v φ  shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like   r −3.75  .
Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localized in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al., but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC 5466, NGC 6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.  相似文献   

17.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

18.
Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is oriented at an angle of 24°–27° to the Sun–Galactic Centre line-of-sight. The ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane   x 0, y 0  , and vertical bar scalelength z 0, is   x 0 :  y 0 :  z 0= 10 : 3.5 : 2.6  , suggesting a slightly more prolate bar structure than the working model of Gerhard which gives the scalelength ratios as   x 0 :  y 0 :  z 0= 10 : 4 : 3  .  相似文献   

19.
We present optical  ( UBVI C )  observations of a rich and complex field in the Galactic plane towards   l ∼ 305°  and   b ∼ 0°  . Our analysis reveals a significantly high interstellar absorption  ( A V ∼ 10)  and an abnormal extinction law in this line of sight. Availing a considerable number of colour combinations, the photometric diagrams allow us to derive new estimates of the fundamental parameters of the two open clusters Danks 1 and Danks 2. Due to the derived abnormal reddening law in this line of sight, both clusters appear much closer (to the Sun) than previously thought. Additionally, we present the optical colours and magnitudes of the WR 48a star, and its main parameters were estimated. The properties of the two embedded clusters, DBS2003 130 and 131, are also addressed. We identify a number of young stellar objects which are probable members of these clusters. This new material is then used to revisit the spiral structure in this sector of the Galaxy showing evidence of populations associated with the inner Galaxy Scutum-Crux arm.  相似文献   

20.
We present FOcal Reducer/low dispersion Spectrograph-1 spectra (from the European Southern Observatory's Very Large Telescope) of a sample of 34 faint  20.0 < g * < 21.1  A-type stars selected from the Sloan Digital Sky Survey Early Data Release, with the goal of measuring the velocity dispersion of blue horizontal branch (BHB) stars in the remote Galactic halo,   R ∼ 80 kpc  . We show that colour selection with  1.08 < u *− g * < 1.40  and  −0.2 < g *− r * < −0.04  minimizes contamination of the sample by less luminous blue stragglers. In classifying the stars we confine our attention to the 20 stars with spectra of signal-to-noise ratio >15 Å−1. Classification produces a sample of eight BHB stars at distances  65–102 kpc  from the Sun (mean 80 kpc), which represents the most distant sample of Galactic stars with measured radial velocities. The dispersion of the measured radial component of the velocity with respect to the centre of the Galaxy is  58 ± 15 km s−1  . This value is anomalously low in comparison with measured values for stars at smaller distances, as well as for satellites at similar distances. Seeking an explanation for the low measured velocity dispersion, further analysis reveals that six of the eight remote BHB stars are plausibly associated with a single orbit. Three previously known outer halo carbon stars also appear to belong to this stream. The velocity dispersion of all nine stars relative to the orbit is only  15 ± 4 km s−1  . Further observations along the orbit are required to trace the full extent of this structure on the sky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号