首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The gravity anomaly field of the Tyrrhenian basin and surrounding regions reflects the complex series of geodynamic events active in this area since the Oligocene–Miocene. They can resume in lithospheric thinning and asthenospheric rising beneath the Tyrrhenian Basin, coexisting with the roll-back subduction of the African plate margin westward sinking beneath the Calabrian Arc. The geographic closeness between these processes implies an intense perturbation of the mantle thermal regime and an interference at regional scale between the related gravity effects.A model of the litho-asthenospheric structure of this region is suggested, showing a reasonable agreement with both the evidences in terms of regional gravity anomaly pattern and the results concerning thermal state and petro-physical features of the mantle. The first phase of this study consisted of the computation of the isotherms in the crust–mantle system beneath the Tyrrhenian Basin and, afterwards, of the density distribution within the partially melted upwelling asthenosphere. The second phase consisted of a temperature/density modelling of the slab subducting beneath the Calabrian Arc. Finally, a 21 / 2 interpretation of gravity data was carried out by including as constraints the results previously obtained. Thus, the final result depicts a model matching both gravity, thermal and petrographic data. They provide (a) a better definition of the thermal regime of the passive mantle rise beneath the Tyrrhenian basin by means of the estimation of the moderate asthenospheric heating and (b) a model of lithospheric slab subducting with rates that could be smaller than generally suggested in previous works.  相似文献   

2.
Thomson 《地学学报》1998,10(1):32-36
Fission-track thermochronology applied to the nappe pile of the Calabrian Arc of southern Italy, particularly within the continental basement rocks, has provided important new constraints on the nature of some of the tectonic contacts. In southern Calabria an important phase of lower Miocene crustal extension is indicated. In northern Calabria no Oligocene or younger extension is seen. Here, the emplacement of continental basement rocks with Alpine metamorphism over ophiolitic rocks with little or no metamorphism is constrained as a thrust of lower to middle Miocene age related to collision of the Calabrian Arc with the Adria plate margin. It is proposed that reduction in the plate convergence velocity during collision of a retreating subduction zone with a continental margin is, at least partly, an explanation for the onset of extension in southern Calabria during the Miocene.  相似文献   

3.
The structural elements constituting the forearc basin of the Calabrian Arc–Sicily orogenic system are recognizable on land and in the Tyrrhenian offshore. The Plio–Pleistocene retreat of the Ionian subduction hinge, coeval with the roll-back of the Africa continental crust, leads to segmentation of the forearc basin and southeastward migration of the Calabrian Arc due to its higher degree of mobility compared to Sicily, where, on the contrary, continental collision takes place. The analysis of geological data collected in three areas of the orogenic belt and the integration with offshore geophysical data show evidence of two phases of subduction hinge retreat: (1) Late Pliocene–Early Pleistocene southeastward migration accompanied by the development of N120°E trending tear-faults and NE–SW-trending extensional systems, (2) Middle–Late Pleistocene SSE-ward migration with development of NNW–SSE-trending tear-faults and N70°E-trending collapse systems. The data presented here provide an innovative framework for the interpretation of this most seismically active area of the Mediterranean. In particular, in the Messina Strait area, the more recent N70°E lineaments could be associated with the faults that generated the 1783 Calabria earthquake and are coherent with the focal mechanism of the 1908 Messina earthquake, confirmed also by the analysis of frequency diagrams of the elongation directions of the isoseists.  相似文献   

4.
The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by sur-face wave velocity tomography and non-linear inversion.Maps of the Moho depth, of the thickness of the lithos-phere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, iden-tified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the prmctpat recent votca-noes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria, a lithospheric dou-bling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenos-phere properties delineate a differentiation between the northern and the southern sectors of the Adriatic Sea,likely attesting the fragmentation of Adria.  相似文献   

5.
The Pamir-Hindu Kush region at the western end of the Himalayan-Tibet orogen is one of the most active regions on the globe with strong seismicity and deformation and provides a window to evaluate continental collision linked to two intra-continental subduction zones with different polarities. The seismicity and seismic tomography data show a steep northward subducting slab beneath the Hindu Kush and southward subducting slab under the Pamir. Here, we collect seismic catalogue with 3988 earthquake events to compute seismicity images and waveform data from 926 earthquake events to invert focal mechanism solutions and stress field with a view to characterize the subducting slabs under the Pamir-Hindu Kush region. Our results define two distinct seismic zones: a steep one beneath the Hindu Kush and a broad one beneath the Pamir. Deep and intermediate-depth earthquakes are mainly distributed in the Hindu Kush region which is controlled by thrust faulting, whereas the Pamir is dominated by strike-slip stress regime with shallow and intermediate-depth earthquakes. The area where the maximum principal stress axis is vertical in the southern Pamir corresponds to the location of a high-conductivity low-velocity region that contributes to the seismogenic processes in this region. We interpret the two distinct seismic zones to represent a double-sided subduction system where the Hindu Kush zone represents the northward subduction of the Indian plate, and the Pamir zone shows southward subduction of the Eurasian plate. A transition fault is inferred in the region between the Hindu Kush and the Pamir which regulates the opposing directions of motion of the Indian and Eurasian plates.  相似文献   

6.
《Gondwana Research》2010,17(3-4):370-400
A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation.  相似文献   

7.
Teleseismic P arrivals at seismological stations are inverted into a model of velocity perturbations down to a depth of about 470 km. Directionally independent average residuals, computed from steeply inciding waves, are transformed into a model of lithospheric thickness. Both models show a good correspondence with the main tectonic features of the Italian Peninsula. Positive velocity perturbations are observed beneath the Alps and in depths over 200 km also beneath the Po Basin. A high-velocity anomaly of the Tyrrhenian subduction is less pronounced, probably due to a directional dependence of P velocities in the mantle. Negative velocity perturbations indicate several low-velocity regions, e.g. beneath the Northern Apennines, the Sicily region and in the upper 100 km beneath the Po Basin. The amplitudes of velocity perturbations beneath the depth of 200 km are smaller on the average than those in the upper two layers. The whole region is characterized by large undulations of the lithosphere base which reaches depths from less than 60 km to more than 150 km. The most prominent lithospheric root beneath the Alps is a product of the collision between the European and the Adriatic plates while the lithospheric thickening beneath the Calabrian coast is likely to be connected with the eastern wing of the Tyrrhenian subduction. The dramatic changes of lithosphere thickness between the northern and the southern Apenninic arcs and northern Calabria as well as the thinnings at the western closure of the Po Basin, indicate important deep-seated boundaries of lithospheric blocks of autonomous geodynamic development.  相似文献   

8.
Numerical studies of subduction zone dynamics on a regional scale usually use a limited spatial extent for their models and therefore need to define boundary conditions on all model edges. These boundary conditions imply a choice for the mechanical and thermal state of the surrounding regions which may influence the evolution of the model system. We investigate the role of the surface and lateral boundary conditions for simple mechanical subduction models using a standard finite element method. We find that subduction is only possible if the slab can decouple from the surface. This decoupling can be achieved by a true free surface, a free-slip surface with a weak crust for the subducting plate, or a free-slip surface with a layer of low viscosity, low density material (‘sticky air’) between the model surface and the crust. Models of slab dynamics that employ a free-slip surface reproduce trench migration, slab sinking velocities and slab geometry of models with a free surface, as long as they use either a weak crust, which can be viscous, viscoelastic and/or brittle, or a ‘sticky air’ layer. The vertical topography will however not be reproduced for free-slip models without a ‘sticky air’ layer. For ocean–ocean convergent models we find that the application of inflow boundary conditions at the edges of the subducting or overriding lithosphere controls trench motion and the geometry of the subducting slab. Inflow on the overriding side causes trench retreat and a slab resting on the lower mantle, whereas inflow restricted to the subducting side can cause trench advance and a slab which folds on the lower mantle.  相似文献   

9.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   

10.
RenzoSartori 《《幕》》2003,26(3):217-221
A deep, narrow, and distorted Benioff zone, plunging from the Ionian Sea towards the southern Tyrrhenian basin, is the remnant of a long and eastward migrating subduction of eastern Mediterranean lithosphere. From Oligocene to Recent, subduction generated the Western Mediterranean and the Tyrrhenian back-arc basins, as well as an accretionary wedge constituting the SouthernAoenninic Arc.In the Tyrrhenian Sea, stretching started in late Miocene and eventually produced two small oceanic areas: the Vavilov Plain during Pliocene (in the centralsector) and the Marsili Plain during Quaternary (in the southeastern sector). They are separated by a thicker crustal sector, called the Issel Bridge. Back-arc exten-sion was rapid and discontinuous, and affected a land locked area where continental elements of various sizesoccurred. Discontinuities in extension were mirrored bychanges in nature of the lithosphere scraped off to form the Southern Apenninic Arc. Part of the tectonic units of the southern Apennines, accreted into the wedge from late Miocene to Pliocene, had originally been laid down on thinned conti-nental lithosphere, which should constitute the deep portion of the present slab. After Plio-cene, only Ionian oceanic lithosphere wassubducted, because the large buoyancy of thewide and not thinned continental lithosphere of Apulia and Africa (Sicily) preserved the seelements from roll back of subduction. After Pliocene, the passively retreating oceanic slabhad to adjust and distort according to the geometry of these continental elements.The late onset of arc volcanism in respect to the duration of extension in the Tyrrhenian-Ionian system may find an expla-nation considering an initial stage of subduc-tion of thinned continental lithosphere. The strong Pleistocene vertical movements that occurred in the whole southeastern system(subsidence in the back-arc basin and upliftin the orogenic arc) may instead be related to the distortion of the oceanic slab.  相似文献   

11.
As Morozov [Morozov, I. B. (2004). Crustal scattering and some artefacts in receiver function images. Bull. Seismol. Soc. Am., 94 (4), 1492–1499.] suggested, for a teleseismic array targeting subducting crust in a zone of active subduction, scattering from the strong horizontal velocity heterogeneity beneath the trench zone itself produces subhorizontally-propagating waves that should be observed as coherent dipping events in receiver functions (RF). Due to similar RF delay times and moveouts, these events could be difficult to distinguish from backscattered P- and S-wave modes. To further verify this suggestion, we performed a full-waveform, 3-D visco-elastic finite-difference modelling of teleseismic wave propagation within a simplified model of a subduction zone. The synthetics show strong scattering from the area beneath the trench, dominated by the mantle and crustal P-waves propagating at 6.2–8.1 km/s and slower. These scattered waves occupy the same time and moveout intervals as the backscattered converted modes, and also have similar amplitudes. Although their amplitude decay characters are different, the uncertainty in the knowledge of the velocity and density structure of the subduction zone could make distinguishing between these modes difficult. However, under minimal assumptions, recent observations of receiver function amplitudes decreasing away from the trench support the interpretation of (sub-) trench-zone scattering.Although still limited in its representation of crustal heterogeneity, 3-D modelling suggests that scattering from near-Moho crustal structures plays a key role in the formation of teleseismic wavefields. Recognition of scattered noise in teleseismic records could help to constrain major crustal structures, particularly those with strong horizontal velocity contrasts at near-Moho depths, such as crustal sutures, subduction fault zones, and mountain roots. Matching of the observed arrivals with wavefield synthetics could help constrain the locations and parameters of such structures and also help substantiate the interpretations.  相似文献   

12.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

13.
《Lithos》2007,93(1-2):149-174
Strong compositional variations are observed in the late-Miocene to Quaternary volcanic rocks of the eastern Trans-Mexican Volcanic Belt. Geochemical and isotopic analyses of samples well constrained in age indicate an abrupt change in magma composition in the late-Miocene (∼ 7.5 Ma), when calc-alkaline, subduction-related magmatism was replaced by mafic, alkaline, OIB-like volcanism. Afterwards, volcanism migrated toward the trench and the erupted lavas showed increasing contributions of subduction components reflected in higher Th/Nb, La/Sm(n), Ba/Nb, and Ba/Th ratios. Lavas from volcanic fields located closer to the trench show clearer, although strongly variable, arc signatures as well as evidence of subducted sediment contributions. Farther from the trench, only lavas emplaced in late-Pliocene time appear to be slightly modified by subduction components, whereas the youngest Quaternary lavas can be regarded as intraplate lavas modified by crustal assimilation.The sudden change in magma composition in the late-Miocene is related to detachment of the subducting slab, which allowed the infiltration of enriched asthenospheric mantle into the mantle wedge. After detachment, the subducting plate started to increase its dip because of the loss of slab pull. This caused (1) the migration of the arc toward the trench, (2) convection of enriched asthenosphere into the mantle wedge, and (3) an increasing contribution of slab components to the melts, in a process that resulted in a highly heterogeneous source mantle. The variable contribution of subduction-related components to the magmas is controlled by the heterogeneous character of the source, the depth of the subducting plate, and the previous magmatic history of the areas.  相似文献   

14.
李忠海  许志琴 《岩石学报》2015,31(12):3524-3530
为了深入探讨大洋俯冲和大陆碰撞沿走向的转换及其动力学特征,同时更好的理解俯冲-碰撞带的流体-熔体活动及其效应,我们建立了一系列三维空间的大尺度、高分辨率的动力学数值模型。模拟结果显示,在板块会聚过程中,流体-熔体活动可以降低周围岩石的流变强度及两个板块之间的耦合作用,并能够促进大陆碰撞带俯冲板块的断离。同时,俯冲-碰撞带的空间转换模型揭示其深部结构存在巨大的沿走向的差异性,大陆碰撞带发生俯冲板块断离,而大洋俯冲板块持续下插。并且上覆板块的地壳物质发生从陆-陆碰撞带向洋-陆俯冲带的侧向逃逸。这种三维空间中沿走向的差异性俯冲-碰撞模式与中-东特提斯构造带相吻合,并揭示其动力学机制。  相似文献   

15.
《Gondwana Research》2010,17(3-4):545-562
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

16.
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

17.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   

18.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

19.
The Neogene–Quaternary Siderno Basin is located in the southern Calabrian Arc, along an E–W transect including the Ionian side and part of the Tyrrhenian margin. The orogenic belt was generated by ongoing northward subduction of Ionian oceanic lithosphere beginning in the Early Cretaceous. Since the Oligocene, the area has experienced complex tectonics, including NW–SE-oriented pull-apart basins. The forearc region contains >2000 m of Oligocene-to-Quaternary strata that cover pre-Tertiary rocks. The succession forms an E-dipping monocline, with tectonic growth structures increasing upward. Erosional truncations and thickness variations suggest a different evolution for the Siderno Basin, which in comparison with northern and southern parts of the Ionian accretionary wedge, evolved differently during the Serravallian–Tortonian stages. NW–SE and NE–SW fault systems are dominant, the first exhibiting strike–slip and normal kinematics in the Nicotera–Gioiosa and Molochio–Antonimina fault zones. These structures were active during infilling of the Neogene basin, and represent a complex transfer zone.

The NE–SW system shows two types of tectonic kinematics: (1) a compressive stage, with NW–SE-orientated shortening, responsible for inversion tectonics documented by east-verging folds, thrusts, and back-thrusts, and (2) emplacement of the variegated clay during the Langhian, which is related to back-thrust propagation. The strike–slip accommodated stress generated in the accretionary prism in response to subduction of Ionian lithosphere and progradation of the accretionary front of the Calabrian forearc.  相似文献   

20.
Ultrapotassic lamproitic rocks in the Western Alps, Tuscany‐Corsica and SE Spain (c. 30 to 1 Ma) show high MgO, Ni and Cr denoting a mantle origin, but also have incompatible element and radiogenic isotope abundances that resemble upper crustal rocks, such as local metapelites and global subducting sediments. The coexistence of mantle and crustal signatures in lamproites indicates a genesis in a lithospheric mantle, which had been contaminated by crustal rocks. The occurrence of lamproitic magmatism along the Alpine collision front suggests that mantle contamination occurred during east‐verging Cretaceous‐Oligocene subduction of the European plate beneath the African margin. We suggest that crustal material originated from the overriding continental margin, which was eroded by the low‐angle subducting European slab. Mantle melting and generation of lamproites took place later, during diachronous opening of Western Mediterranean basins, contemporaneously with a new cycle of magmatism, which was genetically related to the west‐north‐dipping Apennine‐Maghrebian subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号