首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microfacies sequence in the key interval of Beds 24―29 of the Meishan section comprehensively recorded the geological events during the Permian-Triassic transition, including the anoxia, storm disturbance, hard-ground/firm-ground form, volcanic eruption, weathering input, and microbialite development. This investigation of event sequences on the microfacies provided synthetically some clues to clarifying the previously proposed mechanisms of the end-Permian extinction. The deposit succession in Bed 24 o...  相似文献   

2.
The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.  相似文献   

3.
The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.  相似文献   

4.
Katsumi  Ueno  Satoe  Tsutsumi 《Island Arc》2009,18(1):69-93
This paper deals with a Lopingian (Late Permian) foraminiferal faunal succession of the Shifodong Formation in the Changning–Menglian Belt, West Yunnan, Southwest China, which has been geologically interpreted as one of the closed remnants in East Asia of the Paleo‐Tethys Ocean. The Shifodong Formation is the uppermost stratigraphic unit in thick Carboniferous–Permian carbonates of the belt. These carbonates rest upon bases consisting of oceanic island basalt and are widely accepted as having a Paleo‐Tethyan mid‐oceanic (seamount‐ or oceanic plateau‐top) origin. Sixteen taxa of fusuline foraminifers and 37 taxa of smaller (non‐fusuline) foraminifers are recognized from the type section of the Shifodong Formation located in the Gengma area of the northern part of the Changning–Menglian Belt. Based on their stratigraphic distribution, three fusuline zones can be established in this section: they are, in ascending order, the Codonofusiella cf. C. kwangsiana Zone, Palaeofusulina minima Zone, and Palaeofusulina sinensis Zone. These three biozones are respectively referable to the Wuchiapingian, early Changhsingian, and late Changhsingian, of which the Wuchiapingian is first recognized in this study in the Changning–Menglian mid‐oceanic carbonates. The present study clearly demonstrates that the foraminiferal fauna in a Paleo‐Tethyan pelagic shallow‐marine environment still maintained high faunal diversity throughout the almost entire Lopingian, although the very latest Permian fauna in the upper part of the Palaeofusulina sinensis Zone of the Shifodong section records a sudden decrease in both faunal diversity and abundance. Moreover, the Shifodong faunas are comparable in diversity with those observed in circum‐Tethyan shelves such as South China. The present Paleo‐Tethyan mid‐oceanic foraminiferal faunas are definitely more diversified than coeval mid‐oceanic Panthalassan faunas, which are typically represented by those from the Kamura Limestone in a Jurassic accretionary complex of Southwest Japan. It is suggestive that the Paleo‐Tethyan mid‐oceanic buildups presumably supplied a peculiarly hospitable habitat for foraminiferal faunal development in a pelagic paleo‐equatorial condition.  相似文献   

5.
Tsutomu  Nakazawa  Katsumi  Ueno    Xiangdong  Wang 《Island Arc》2009,18(1):94-107
Huge carbonate rock bodies ranging in age from the Visean (Middle Mississippian/Early Carboniferous) to the Changhsingian (Lopingian/Late Permian) overlie a basaltic basement in the Changning–Menglian Belt, West Yunnan, Southwest China. These carbonates lack intercalations of terrigenous siliciclastic material throughout. These lines of evidence indicate that they formed upon an isolated and continuously subsiding mid-oceanic island (or plateau), probably of hotspot origin. The carbonates are grouped into a shallow-water carbonate platform facies regime observed in the Yutangzhai section and a relatively deep-water carbonate slope facies regime typically represented in the Longdong section. These two facies regimes developed contemporaneously as parts of a carbonate depositional system on and around a mid-oceanic volcanic edifice. The carbonate platform is subdivided into four facies, including platform-margin, shoal, lagoon, and peritidal facies. Along the measured Yutangzhai section of the platform facies regime, the vertical facies succession from the platform-margin facies into inner-platform facies such as the shoal and lagoon facies is recognized. This facies succession is explained as resulting from the progradation of the carbonate platform. Worm tubes occur as a main reef builder in platform-margin facies of the Mississippian. Their occurrence as major constituents in a high-wave-energy reef is peculiar to Carboniferous reef distributions of the world. The occurrences of other reef- and/or mound-building organisms and peritidal dolo-mudstone are almost consistent in timing with those of Panthalassan counterparts such as the Akiyoshi and Omi limestones of Japan, and probably exhibit the worldwide trend.  相似文献   

6.
通过微纳米 CT、FIB 双束扫描电镜等实验手段,对吉木萨尔凹陷二叠系芦草沟组致密油储层进行详细的探讨。研究发现,吉木萨尔凹陷二叠系芦草沟组储层为中孔-低渗、特低渗、低孔特低渗储层,孔隙以微纳米级为主,类型多样,主要有粒间孔(缝)、粒间溶孔、晶间孔、层间缝及微裂隙等。不同类型储集段,储层物性和孔隙结构差异较大:上甜点区砂屑云岩孔隙以粒间孔(缝)和溶孔为主,多为微米级;下甜点区灰质粉砂岩以粒间孔和晶间孔为主,孔隙多为纳米级,0.05~0.1μm;非甜点区的灰质炭质泥岩主要发育晶间孔、层间缝和微裂隙,裂隙宽约5~6μm。  相似文献   

7.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

8.
Sedimentary environment and distribution of brachiopods during the Changhsingian in Xingwen, Si-chuan Province of the upper Yangtze region, are statistically analyzed. Changing regularity in diversity of brachiopod is synthetically investigated based on qualitative and quantitative analysis of transgres-sion-regression cycles. The results show that the diversity of brachiopods in this region in the trans-gression (aggradation) sequence is higher than that in the regression (progradation) sequence. The brachiopods in this area began to diversify in the early Changhsingian. And the species diversity had four peak stages which are respectively in the middle Early Changhsingian, late Early Changhsingian, early Late Changhsingian and late Late Changhsingian. The species diversity reached its highest in the late Late Changhsingian but this is followed by a sharp decrease at the end-hanghsingian, indicating the mass extinction of most brachiopod species which were prosperous in the Late Paleozoic.  相似文献   

9.
A Permian-Triassic (P-Tr) boundary section of continuous carbonate facies, which well recorded the biotic and environmental processes through the great P-Tr transition in the shallow non-microbialite carbonate facies, has been studied in Yangou, Leping County, Jiangxi Province. The P-Tr sequence is well correlated with the Meishan section according to the conodont biostratigraphy and the excursion of carbon isotopes. A series of high-resolution thin-sections from the P-Tr boundary carbonate rocks at the Yangou section are studied to explore the interrelation between environmental change and biological evolution during the transitional time. Six microfacies have been identified based upon the observation of the thin-sections under a microscope on the grains and matrix and their interrelation. Combined with the data of fossils and carbon isotopes, Microfacies 4 (MF-4), coated-grain-bearing foraminifer oolitic sparitic limestone, and Microfacies 6 (MF-6), dark shelly micritic limestone, should be the different responses to the two episodes of mass extinction and environmental events that can be correlated throughout South China and even over the world. The oolitic limestone of MF-4 is the first finding from the latest Permian strata in South China and it might be a proxy of an unusual environmental condition of high pCO2, low sulfate concentration and of microbial blooming in the aftermath of the latest Permian mass extinction. The micritic limestone of MF-6 containing rich micro-gastropods and ostracods probably represents the blooming event of disaster taxa in the earliest Triassic environment. The microfacies analysis at the Yangou section can well reveal the episodic process of the biological evolution and environmental change in the shallow non-microbialite carbonate facies throughout the great P-Tr transition, thus the Yangou section becomes an important complement to the Meishan section.  相似文献   

10.
The greatest Phanerozoic mass extinction happened at the end-Permian to earliest Triassic.About 95%species,82%genera,and more than half families became extinct,constituting the sole macro-mass extinction in geological history.This event not only caused the great extinction but also destroyed the 200 Myr-long Paleozoic marine ecosystem,prompted its transition to Mesozoic ecosystem,and induced coal gap on land as well as reef gap and chert gap in ocean.The biotic crisis during the Paleozoic-Mesozoic transition was a long process of co-evolution between geospheres and biosphere.The event sequence at the Permian-Triassic boundary(PTB)reveals two-episodic pattern of rapidly deteriorating global changes and biotic mass extinction and the intimate relationship between them.The severe global changes coupling multiple geospheres may have affected the Pangea integration on the Earth’s surface spheres,which include:the Pangea integration→enhanced mountain height and basin depth,changes of wind and ocean current systems;enhanced ocean basin depth→the greatest Phanerozoic regression at PTB,disappearance of epeiric seas and subsequent rapid transgression;the Pangea integration→thermal isolation effect of continental lithosphere and decrease of mid-ocean ridges→development of continental volcanism;two-episode volcanism causing LIPs of the Emeishan Basalt and the Siberian Trap(259–251 Ma)→global warming and mass extinction;continental aridification and replacement of monsoon system by latitudinal wind system→destruction of vegetation;enhanced weathering and CH4emission→negative excursion ofδ13C;mantle plume→crust doming→regression;possible relation between the Illawarra magnetic reversal and the PTB extinction,and so on.Mantle plume produced the Late Permian LIPs and mantle convection may have caused the process of the Pangea integration.Subduction,delamination,and accumulation of the earth’s cool lithospheric material at the"D"layer of CMB started mantle plume by heat compensation and disturbed the outer core thermo-convection,and the latter in turn would generate the mid-Permian geomagnetic reversal.These core and mantle perturbations may have caused the Pangea integration and two successive LIPs in the Permian,and probably finally the mass extinction at the PTB.  相似文献   

11.
The Sasso Lungo group forms an isolated mountain mass in the Italian Dolomites in the SE Alps. The group has an area of ± 9 km2 and its elevation ranges from ± 2000–3000 m. The central part consists of an exhumed, dolomitized reef of Triassic age, which has subsided by gravity tectonics partly into the surrounding and underlying plastic Permian and Triassic formations. The hydrogeological characteristics of the formations are discussed. The central reef mass forms the main aquifer, and it is embedded in impervious formations. The discharge of the snowmelt water and rain takes mainly place through a few large springs around the group at some distance from the reef. The springs are hydraulically connected with low subterranean overflow points in the impervious rim of the reef through natural conduits of permeable moraines and Quaternary valley fills. The central lolomite aquifwe shows no signs of karst drainage. The water moves through a dense network of fractures and joints and it has probably a free, fluctuating water table, subdivided by groundwater divides which coincide in most cases with surface drainage divides. All springs and surface waters were mapped and sampled during the summer and fall periods from 1966 through 1968. The chemical composition of the spring waters was very useful in tracing the origin of the spring waters.  相似文献   

12.
Age determinations of the Triassic lithostratigraphic units of the Yanshan belt were previously based on plant fossils and regional correlations of lithologies. The Liujiagou and Heshanggou Formations were assigned as the Lower Triassic, and the Ermaying Formation was regarded as the Middle Triassic. We carried out a geochronologic study of detrital zircon grains from the Triassic sandstone in the Xiabancheng and Yingzi basins in northern Hebei where the Triassic strata are exceptionally well preserved. The results show that the Liujiagou, Heshanggou, and Ermaying Formations are all Late Triassic in age. The ages of detrital zircons also revealed that the upper part of the Shihezi Formation and the overlying Sunjiagou Formation, both of which were thought to be the Middle-Late Permian units, are actually late Early to Middle Triassic deposits. This study combines the upper Shihezi and Sunjiagou Formations into a single unit termed as the Yingzi Formation. We also substitute the widely-used Liujiagou, Heshanggou, and Ermaying Formations with the Dingjiagou, Xiabancheng, and Huzhangzi Formations, respectively. Field observations and facies analysis show that the top of the Shihezi Formation is an erosive surface, marking a parallel unconformity between the Middle Permian and Lower Triassic. The Yingzi Formation is composed mainly of meandering river deposits, indicative of tectonic quiescence and low-relief landform in the Early to Middle Triassic. In contrast, the Dingjiagou, Xiabancheng, and Huzhangzi Formations are interpreted as the deposits of sandy/gravelly braided rivers, alluvial fans, fan deltas, and deep lakes in association with volcanism, thus indicating an intense rifting setting. A new Triassic lithostratigraphic division is proposed according to age constraints and facies analysis, and the results are of significance for understanding the early Mesozoic tectonic evolution of the Yanshan belt.  相似文献   

13.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   

14.
The evolutionary patterns of Productida (brachiopod) morphology throughout the Permian show that while the percentage proportion of Productida (brachiopod) with strongly concentric and radial ornamentation declined from the Cisuralian to the Guadalupian, and then increased towards the Changhsingian via Wuchiapingian, the percentage proportion of Productida (brachiopod) with fine concentric and radial ornamentation distinctly increased from the Cisuralian to the Guadalupian, slightly declined towards the Wuchiapingian, and then increased towards the Changhsingian. From the Cisuralian to the Changhsingian, the percentage proportion of brachiopods with spinose ornamentation shows a persistent declining trend. The shell size generally indicates a miniaturization trend at species level during the Wuchiapingian to Changhsingian (including the transitional bed). These evolutionary patterns of brachiopod ornamentation and size are possibly related to the anoxia, food shortage, sea-level fluctuation, and change of substrate in the Permian (including the Permian-Triassic transitional interval) in South China.  相似文献   

15.
Many fusulinid fossils have been found in thin- to middle-bedded limestones which are distributed between the Early Permian limestone hills and formerly considered as Early Triassic. The fusulinid fossils, identified asNeoshwagerina sp.,Verbeekina sp. andSchwagerina sp., can also be found in massive limestone hills. At the same time, Early Permian radiolarian chert of deep basin facies was discovered in Animaqing. All the above show that the massive limestone hills, thin- to middle-bedded limestones and radiolarian chert belong to syndeposits in Early Permian ocean. The sediments in the study area can roughly be divided into three types: shallow facies, basin facies and transitional facies. The carbonate buildup can be subdivided into massive bioclastic limestone and reef framestone. Basin facies contains thin- or middle-bedded limestone, abyssal red mudstone or ooze, blue-green mudstone and radiolarian chert. Transitional facies includes reef talus and platformal skirt facies. The Early Permian ocean in Eastern Kunlun is recognized as a kind of reef-island ocean environment according to distribution and composition of different facies. The reef-island ocean in Eastern Kunlun is characterized by reef islands (or carbonate buildups) alternating with basins, complicated sea-floor topography, sharp facial change and well-developed reefs.  相似文献   

16.
Diverse and abundant siliceous sponge spicules were found in the latest Permian beds, Dongpan and Ma'anying sections, South China, including 52 types and 85 forms. Further investigation on these spicules allows us to understand extinction patterns and processes of deep-water sponges. These sponge spicules rapidly decreased below the Permian/Triassic boundary (PTB), and the extinction rates reach up to 88%-90% for types and 88%-92% for forms. Their extinction pattern is a gradual one that consists of two stages: the first is characterized by a gentle and slow extinction speed and low extinction rate, and the second by sharp and fast extinction speed and high extinction rate. The morphological extinction process is involved in the disappearance first of the triaxons and tetraxons, then of the polyaxons and demas, and last of monaxons. In exterior structure extinction, the complex spicules with branches and spines became extinct more easily than did smooth spicules. After the end-Permian mass extinction, only five common and smooth forms survived: Oxeas A, Oxeas B, Strongles B, Oxy-orthpentactines and Oxy-orthohexactines A.  相似文献   

17.
The study of Upper Paleozoic and Mesozoic palynomorphs in three boreholes from the Deocha-Pachami area, Birbhum Coalfield, West Bengal, India, has allowed dating of the Talchir, Barakar, Dubrajpur, and Rajmahal formations, and revealed many hiatuses. The lowermost unit, the Talchir Formation, yielded earliest Permian palynomorphs. The Barakar Formation, which includes coal-bearing strata, was previously dated as Early Permian. However, data presented herein indicate an Early Permian to earliest Triassic age for this unit-containing actually the Karharbari, Barakar s.s., Kulti, and Ranigang formations as well as the basal part of the Panchet Formation. The overlying Dubrajpur Formation is Jurassic (Callovian to Tithonian), with an unconformity at its base. The uppermost Dubrajpur Formation is Tithonian-Berriasian. The palynomorphs from the intertrappeans within the Rajmahal Formation suggest an Early Cretaceous age. The revised ages of the Barakar and Dubrajpur formations are of major regional significance. The distribution patterns of spore-pollen may provide a broad spectrum of paleoclimate during Permian, Late Jurassic, and Early Cretaceous times, as there is no record of marine signatures in the study area.  相似文献   

18.
Recent works reveal that the size reduction of or- ganisms during the Permian-Triassic transition is of great importance for research on biotic mass extinction and recovery in this period[1,2]. Initially, Urbanek (1993) observed a decrease in the size of Silurian graptolites during the biotic crisis, and used the term “Lilliput Effect” to define the size reduction in sur- viving animal taxa[3]. Subsequently, researchers re- ported a decrease in size of late Devonian conodonts[4], heart urc…  相似文献   

19.
This study is based on both a generic and species level investigation of the individual size of the latest Permian conodont Neogondolella Pa elements collected from Meishan Section A, Changxing, Zhejiang Province. In this study, an obvious size reduction of Neogondolella Pa elements within bed 24e of the upper Changxing Limestone is recognized. The size variation of the Neogondolella occurs simultaneously with some important events including the negative shift of δ 13C, change in the ratio of the abundance of cyanobacterial biomarkers versus that of other general bacterial biomarkers and the shallowing of the sea water. Through the investigation of the paleoenvironmental changes and the analysis of the paleoecology of the conodont genus Neogondolella, the authors propose that the major factors for the size reduction of species of the conodont genus Neogondolella are food shortages caused by the mass extinction, the shallowing of the sea water as well as the increase in opacity of the sea water during the end Permian. The same phenomenon of Neogondolella size reduction is also observed in preliminary research from the same horizon at Shangsi Section, Sichuan Province. All the evidence suggests that there was a mass extinction that occurred at the horizon of bed 24e, and the evidence supports the viewpoint of a multi-phase mass extinction during the Permian and Triassic transition in South China.  相似文献   

20.
The Upper Permian Dalong Formation (P2d) and Changxing Formation (P2C), and the Lower Triassic Zhengtang Formation (Tlz) are of deep-water turbidites. The sedimentary features of the NW Zhejiang are of SE-dipping passive continental margin from the Paleozoic to the early Triassic. Together with the foreland molasse basin during the late Triassic (T3w), the tectonics of the NW Zhejiang is characterised by a tectogenesis which took place in the middle Triassic. From SE to NW, the structural style varies from multi-duplex, antiformal stack to imbricate fans, and then to Jura Mountain-type fold zone with fold-style varying gradually from large-scale tight fold to midscale chevron fold, then to cylindrical fold, reviewing a preliminary scenario of foreland fold and thrust belt. The space-distributed structures and the tectonic vergence indicate the significance of deformation in (T1-T3). Project supported by the National Natural Science Foundation of China and Chinese Academy of Sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号