首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel, similar and constrained folds   总被引:1,自引:0,他引:1  
Theoretical analysis of folding of viscous multilayers with free slip or bonding at layer contacts indicates that folds in such multilayers can be described in terms of three end-members:parallel, in which orthogonal thicknesses of layers are largely constant;similar, in which vertical thicknesses of layers and shapes of successive interfaces are essentially constant; andconstrained, in which amplitudes of anticlines and synclines decrease to zero at upper and lower boundaries. Constrained,internal folds form if the multilayer is confined by rigid media; parallel,concentric-like folds form if the multilayer is confined by soft media, provided soft interbeds are sufficiently thin for the stiff layers to fold as an ensemble. Similar,sinusoidal orchevron folds form throughout much of the thickness of a multilayer, for any stiffness of confining media, provided wavelengths of folds are short relative to the thickness of the multilayer or soft interbeds are sufficiently soft and thick for the stiff layers to act independently. The analysis shows that multilayer folds may have the same form regardless of whether the layer contacts are freely slipping or bonded.

The forms of folds in multilayers confined by media with different viscosities above and below depend on the viscosity contrast of the media. For no medium above and a rigid medium below, the forms are concentric-like in the upper part and internal in the lower part of the multilayer. For no medium above and a soft medium below, the folds are concentric-like throughout the multilayer.

The theory indicates that a useful way to analyze forms of folds in rocks or in experiments is in terms of component waveforms, as defined, for example, by Fourier series. The distributions of amplitudes of component waveforms throughout the multilayer appears to be diagnostic, reflecting contrasts in properties of the multilayer and its confining media. Analysis of a large fold in the central Appalachians, Pennsylvania, and of a smaller fold in the Huasna syncline, California, indicates that at least three component waveforms are required to produce the gross forms of those folds.

The theory closely predicts wavelengths and shapes of folds produced in analogous elastic multilayers, indicating that nonlinearities in material behavior, which are inherent in the elastic material but are absent in the viscous material, are less significant than nonlinearities in the boundary conditions, which are the same in elastic and viscous materials.  相似文献   


2.
This part concerns folding of elastic multilayers subjected to principal initial stresses parallel or normal to layering and to confinement by stiff or rigid boundaries. Both sinusoidal and reverse-kink folds can be produced in multilayers subjected to these conditions, depending primarily upon the conditions of contacts between layers. The initial fold pattern is always sinusoidal under these ideal conditions, but subsequent growth of the initial folds can change the pattern. For example, if contacts between layers cannot resist shear stress or if soft elastic interbeds provide uniform resistance to shear between stiff layers, sinusoidal folds of the Biot wavelength grow most rapidly with increased shortening. Further, the Biot waves become unstable as the folds grow and are transformed into concentric-like folds and finally into chevron folds. Comparison of results of the elementary and the linearized theories of elastic folding indicates that the elementary theory can accurately predict the Biot wavelength if the multilayers contain at least ten layers and if either the soft interbeds are at most about one-fifth as stiff as the stiff layers, or there is zero contact shear strength between layers.Multilayers subjected to the same conditions of loading and confinement as discussed above, can develop kink folds also. The kink fold can be explained in terms of a theory based on three assumptions: each stiff layer folds into the same form; kinking is a buckling phenomenon, and shear stress is required to overcome contact shear strength between layers and to produce slippage locally. The theory indicates that kink forms will tend to develop in multilayers with low but finite contact shear strength relative to the average shear modulus of the multilayer. Also, the larger the initial slopes and number of layers with contact shear strength, the more is the tendency for kink folds rather than sinusoidal folds to develop. The theoretical displacement form of a layer in a kink band is the superposition of a full sine wave, with a wavelength equal to the width of the kink band, and of a linear displacement profile. The resultant form resembles a one-half sine curve but it is significantly different from this curve. The width of the kink band may be greater or less than the Biot wavelength of sinusoidal folding in the multilayer, depending upon the magnitude of the contact shear strength relative to the average shear modulus. For example, in multilayers of homogeneous layers with contact strength, the Biot wavelength is zero so that the width of the kink band in such materials is always greater than the Biot wavelength. In general, the higher the contact strength, the narrower the kink band; for simple frictional contacts, the widths of kink bands decrease with increasing confinement normal to layers. Widths of kink bands theoretically depend upon a host of parameters — initial amplitude of Biot waves, number of layers, shear strength of contacts between layers, and thickness and modulus ratios of stiff-to-soft layers — therefore, widths of kink bands probably cannot be used readily to estimate properties of rocks containing kink bands. All these theoretical predictions are consistent with observations of natural and experimental kink folds of the reverse variety.Chevron folding and kink folding can be distinctly different phenomena according to the theory. Chevron folds typically form at cores of concentric-like folds; they rarely form at intersections of kink bands. In either case, they are similar folds that develop at a late stage in the folding process. Kink folds are more nearly akin to concentric-like folds than to chevron folds because kink folds form early, commonly before the sinusoidal folds are visible. Whereas concentric-like folds develop in response to higher-order effects near boundaries of a multilayer, kink folds typically initiate in response to higher-order shear, as at inflection points near mid-depth in low-amplitude, sinusoidal fold patterns. Chevron folding and kink folding are similar in elastic multilayers in that elastic “yielding” at hinges can produce rather sharp, angular forms.  相似文献   

3.
作为变质核杂岩构造的重要组成部分,拆离断层带内广泛发育的褶皱构造与其寄主岩石一样记录了中下地壳拆离作用过程。选取辽南变质核杂岩金州拆离断层带内褶皱构造作为研究对象,基于叶理与褶皱构造关系分析,划分了褶皱期次与阶段性;通过形态组构分析、结晶学组构分析及石英古温度计等技术方法的应用,初步分析了拆离断层内褶皱的形成机制,为辽南地区拆离作用过程提供约束。根据褶皱形成与拆离作用的时间关系,将拆离带内褶皱分为拆离前褶皱、拆离同期褶皱和拆离后褶皱;拆离作用同期的褶皱按时间早晚分为早期(a1)阶段、中期(a2)阶段、晚期(a3)阶段。不同阶段褶皱的野外形态、叶理与褶皱关系等方面的差异,以及形态组构与结晶学组构的特征,为判断和恢复褶皱的形成机制提供了佐证,揭示出拆离断层带褶皱是在纵弯压扁和顺层流变的共同作用下递进剪切变形的产物。在拆离作用过程中, a1阶段和a2阶段褶皱以纵弯、压扁褶皱作用为主,a3阶段褶皱以弯滑作用为主。褶皱作用记录了拆离断层一定温度范围内(主要集中在380~500 ℃)的变形特征,拆离作用从早期到晚期的演化整体处于相对稳定的应变状态下。对金州拆离断层带而言,在区域NW-SE向伸展过程中,还伴随着NE-SW向微弱的收缩。  相似文献   

4.
Parasitic folds are typical structures in geological multilayer folds; they are characterized by a small wavelength and are situated within folds with larger wavelength. Parasitic folds exhibit a characteristic asymmetry (or vergence) reflecting their structural relationship to the larger-scale fold. Here we investigate if a pre-existing geometrical asymmetry (e.g., from sedimentary structures or folds from a previous tectonic event) can be inherited during buckle folding to form parasitic folds with wrong vergence. We conduct 2D finite-element simulations of multilayer folding using Newtonian materials. The applied model setup comprises a thin layer exhibiting the pre-existing geometrical asymmetry sandwiched between two thicker layers, all intercalated with a lower-viscosity matrix and subjected to layer-parallel shortening. When the two outer thick layers buckle and amplify, two processes work against the asymmetry: layer-perpendicular flattening between the two thick layers and the rotational component of flexural flow folding. Both processes promote de-amplification and unfolding of the pre-existing asymmetry. We discuss how the efficiency of de-amplification is controlled by the larger-scale fold amplification and conclude that pre-existing asymmetries that are open and/or exhibit low amplitude are prone to de-amplification and may disappear during buckling of the multilayer system. Large-amplitude and/or tight to isoclinal folds may be inherited and develop type 3 fold interference patterns.  相似文献   

5.
The inversion of the Middle Proterozoic Belt sedimentary basin during Late Cretaceous thrusting in Montana produced a large eastwardly-convex salient, the southern boundary of which is a 200 km-long oblique to lateral ramp subtended by a detachment between the Belt rocks and Archean basement. A 10 km-long lateral ramp segment exposes the upper levels of the detachment where hanging wall Belt rocks have moved out over the Paleozoic and Mesozoic section. The hanging wall structure consists of a train of high amplitude, faulted, asymmetrical detachment folds. Initial west-east shortening produced layer parallel shortening fabrics and dominantly strike slip faulting followed by symmetrical detachment folding. “Lock-up” of movement on the detachment surface produced regional simple shear and caused the detachment folds to become asymmetrical and faulted. Folding of the detachment surface after lock-up modified the easternmost detachment folds further into a southeast-verging, overturned fold pair with a ramp-related fault along the base of the stretched mutual limb.  相似文献   

6.
The Ramshorn Peak area of the Idaho-Wyoming thrust belt lies in the toe of the Prospect thrust sheet along the eastern margin of the exposed part of the thrust belt. The terrain is folded with axes trending N-S and wavelengths ranging from 3 to 4.3 km. Thrusts occur exclusively along the eastern part of the map area where the toe of the Prospect thrust sheet is thinnest. The easternmost thrusts are backthrusts.Monoclinally folded rocks are thrust on less deformed rocks south of Ramshorn Peak. This fold and fault complex is interpreted to have formed by thrusting over a large oblique and small forward step. The oblique step is responsible for the formation of the monocline in the hanging wall of the thrust. All faults and associated folds are rotated by subsequent buckle folding.Second- and third-order folds (folds at the scale of the Ramshorn Peak fold and fault complex and smaller) appear to be isolated features associated with faults (fault-related folds rather than buckle folds) because they are not distributed throughout the map area. These folds were probably initiated by translation and adhesive drag. The early folding was terminated by large translation over a stepped thrust surface which caused additional folding as the hanging wall rocks conformed to the irregular shape of the footwall. The Rich model is utilized to explain the Ramshorn Peak complex because the fold is of monoclinal form and is an isolated feature rather than part of a buckle fold wave-train.  相似文献   

7.
The Salado River fault (SRF) is a prominent structure in southern Mexico that shows evidence of reactivation at two times under different tectonic conditions. It coincides with the geological contact between a structural high characterized by Palaeozoic basement rocks to the north, and an ~2000 m thick sequence of marine and continental rocks that accumulated in a Middle Jurassic–Cretaceous basin to the south. Rocks along the fault within a zone up to 150 m across record crystal-plastic deformation affecting the metamorphic basement of the Palaeozoic Acatlán Complex. Later brittle deformation is recorded by both the basement and the overlying Mesozoic sedimentary rocks. Regional features and structural textures at both outcrop and microscopic scale indicate two episodes of left-lateral displacement. The first took place under low-to medium-grade P-T conditions in the late Early Jurassic (180 Ma) based on the interpretation of 40Ar/39Ar ratios from muscovite within the fault zone; the second occurred under shallow conditions, when the fault served as a transfer zone between areas with differing magnitudes of shortening north and south of the fault. In the southern block, fold hinges were dragged westward during Laramide tectonic transport to the east, culminating in brittle deformation characterized by strike–slip faulting in the Mesozoic sedimentary rocks. North of the fault, folds are not well defined, and it is clear that the fold hinges observed in the southern block do not continue north of the fault. Although the orientation and kinematics of the SRF are similar to major Cainozoic shear zones in southern Mexico, our new data indicate that the fault had become inactive by the time of Oligocene volcanism.  相似文献   

8.
The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated 90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with 60% east–west and >25% north–south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.  相似文献   

9.
Along active margins, tectonic features that develop in response to plate convergence are strongly controlled by subduction zone geometry. In West Junggar, a segment of the giant Palaeozoic collage of Central Asia, the West Karamay Unit represents a Carboniferous accretionary complex composed of fore-arc sedimentary rocks and ophiolitic mélanges. The occurrence of quasi-synchronous upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the West Junggar. Latest Carboniferous (ca. 300 Ma) alkaline plutons postdate this early phase of folding, which was synchronous with accretion of the Carboniferous complex. The Permian Dalabute sinistral fault overprints Carboniferous ductile shearing and split the West Karamay Unit ca. 100 km apart. Oblique convergence may have been provoked by the buckling of the Kazakh orocline and relative rotations between its segments. Depending upon the shape of the convergence zone, either upright folds and fold with vertical axes, or alternatively, strike–slip brittle faults developed in response to strain partitioning. Sinistral brittle faulting may account for the lateral imbrication of units in the West Junggar accretionary complex.  相似文献   

10.
鄂尔多斯盆地西南缘断层相关褶皱与油气圈闭构造   总被引:6,自引:0,他引:6  
通过对鄂尔多斯盆地西南缘三岔-演武地区野外调查和地震剖面分析,用断层相关褶皱理论对油气储集构造进行了研究。提出在盆地西南缘由断层转折褶皱形成油气圈闭构造的两种类型:(1)缺失前翼膝折带的断层转折褶皱;(2)完整结构的断层转折褶皱。  相似文献   

11.
Tectonic slides: A review and reappraisal   总被引:1,自引:0,他引:1  
Donald H.W. Hutton 《Earth》1979,15(2):151-172
Tectonic slides are faults that have been described and discussed in the Caledonides for over fifty years but which, possibly because of misunderstanding, have failed to find acceptance in structural schemes elsewhere. A review of the literature suggests, nevertheless, that they are a distinct class of fault common in certain terrains. Unlike the usual ‘brittle’ faults, slides occur in metamorphic conditions as an integral part of the more widespread fabric producing regional deformation that characterises metamorphic—orogenic belts. Because of their formation in such ‘ductile’ environments, slides are broadly concordant structures which are rarely associated with cataclasis. Since they also often lie along lithological contacts, they may be very difficult to detect at outcrop — despite the large displacements that may have taken place. Slides however may be recognised by (a) tectonic schist, and (b) their typical occurrence in planar zones of intensified regional deformation. They are often associated with major folds: either occurring in individual fold limbs or else cutting across the axial planes of fold pairs or groups of folds. Alternatively they may be unrelated to folds and may occur at simple lithological junctions or else separate rocks of widely different orogenic history, i.e. at tectonic fronts. Strain studies suggest that lithological contacts are important in initiating slides because of the different response of contrasting rock types to high strains.  相似文献   

12.
Folds in the Huasna area of the southern Coast Ranges of California provide an opportunity to study different fold forms and to estimate dimensional and relative rheological properties of rocks at the time of folding. Plunging, concentric-like and chevron-like folds with wavelengths ranging from about 0.1 to 1 km are clearly visible in natural exposures at the south end of the Huasna syncline, which has a wavelength of 12–16 km. Examination of two fresh roadcut exposures in the Miocene Monterey Formation suggests that folding within part of the Monterey was accommodated primarily by layer-parallel slip between structural layers with thicknesses ranging from 30 to 43 m, even though lithologic layers range from a few mm to a few dm in thickness. This part of the Monterey is folded into a series of concentric-like folds, with chevron-like folds at their cores and with a ratio of wavelength to total thickness of layers of about . Theoretical analysis of multilayers, comprised of identical, elastic or elastic—plastic layers with frictionless contacts, indicates that the effective, or weighted-average thickness of structural layers corresponding with an ratio of 0.42 is about 41 m. Thus, the theoretical predictions are roughly in agreement with available data concerning these folds.Thicknesses of structural units in other folds of this area are inadequately known to closely check theoretical predictions, but most of the data are consistent with predictions. An exception is the Huasna syncline which has a larger wavelength than we would predict. There are several likely explanations for this discrepancy. Layers in the underlying Franciscan complex may have taken part in the folding, making our estimates of total thickness too small. The basement rocks may have been much softer, relative to the overlying sedimentary rocks, than we assumed. The Huasna syncline could be partly a result of gravitational instability of relatively low density, Miocene siliceous and porcelaneous shales, overlain by relatively high density, Pliocene sandstones.The Huasna syncline and some of the smaller folds in the Miocene rocks are doubly in the northwest—southeast direction. Further, the maximum compression was approximately normal to the traces of the large faults in this part of California.  相似文献   

13.
Most folds in stratified rock are similar in form to ideal kink, concentric or chevron folds, in which there are discontinuities in slope or curvature of bedding planes. In this respect most folds appear to be closely related to faults, traces of which can be considered to be lines across which there are discontinuities of displacement of layers. Further, the close association of reverse faults and folds or monoclinal flexures seems to indicate that theories of faulting and folding should be closely related.The theory of characteristics is a mathematical tool with which we can obtain insights into processes involving discontinuities. Theoretical characteristic lines are directions across which certain variables might be discontinuous and they are directions along which discontinuities propagate. The theory has been widely applied in plasticity theory and in fluid mechanics and theoretical studies of faulting have suggested that faults are analogous to the lines of discontinuity predicted by plasticity theory. Elasticity and viscosity theories, on which theories of folding have been founded, exclude the existence of characteristic lines in the materials unless the equilibrium equations, rheological properties or strains are nonlinear. However, all folding theories are nonlinear to some extent and the theories can be modified so that they predict lines of discontinuity for some conditions of loading and deformation.Theories of folding will be developed in subsequent papers of this series in order to predict conditions under which characteristic lines can exist in multilayered materials and in order to determine the conditions that must be satisfied across and along the characteristic lines. The theory should help us to recognize lines of apparent discontinuity in natural and experimental folds and study of these lines should provide further understanding of mechanisms of folding.Experimental studies of folding of a wide variety of materials, including alternating layers of rubber and gelatin, modeling clay and grease or graphite, and potter's clay and rubber or cardboard, suggest that the patterns of folding in these materials begin with sinusoidal forms, transform into concentric or kink forms and then into chevron forms as the multilayers are shortened axially. A suitable theory of folding of multilayers should account for these observations.  相似文献   

14.
伸展褶皱作用及其油气勘探意义   总被引:2,自引:0,他引:2  
汪新文 《现代地质》2008,22(1):60-69
伸展褶皱是张性盆地区构造变形的重要组成部分,其分布相当普遍,多属于与正断层相关的褶皱。伸展褶皱的分类可以采用褶皱轴向与成因类型相结合的方案。按褶皱轴向与相关正断层或区域构造线的关系可分为纵向、横向和斜向褶皱3大类;按褶皱作用的成因机制又可分为伸展断弯褶皱、伸展断展褶皱、断层牵引褶皱、逆牵引褶皱、均衡褶皱、断层位移梯度褶皱、构造变换带褶皱、横向收缩褶皱、转换伸展褶皱等多种类型。伸展褶皱是伸展型盆地中最重要的油气圈闭构造,而且可以控制沉积相带的分布,有利于形成良好的储集岩系,促进油气运移,并与断层、岩性、地层相结合形成多种类型的复合油气藏,控制油气的富集区带。  相似文献   

15.
This paper describes how a model of fixed-hinge, basement-involved, fault-propagation folds may be adapted to apply to thin-skinned thrust faults to generate footwall synclines. Fixed-hinge, fault-propagation folding assumes that the fold-axial surfaces diverge upwards, fold hinges are fixed in the rock, the fault propagated through the forelimb, thickness changes occur in the forelimb and the forelimb progressively rotates with increasing displacement on the underlying fault. The original model for fixed-hinge, fault-propagation folds was developed for the case of a planar fault in basement with a tip line that was at the interface between basement and the overlying sedimentary cover rocks. The two geometries applicable to thin-skinned thrusts are for the cases where a fixed-hinge fault-propagation fold develops above an initial bedding-parallel detachment, and an initial fault ramp of constant dip which flattens down-dip into a bedding-parallel detachment.  相似文献   

16.
Centrifuge analogue modelling illustrates the progressive development of active folds in multilayers upon a ductile substrate during layer-parallel shortening. Models simulate folding of a mechanically stratified sedimentary sequence upon migmatitic gneisses in a large hot orogen, or upon a thick basal evaporite ± shale sequence in deeper levels of fold belts. The absence of a weak low-viscosity and low-density layer at the interface promotes infolding of the cover sequence and ductile substrate, whereas a planar upper surface to the basal ductile substrate is preserved when it is present. Whilst fold style, wavelength, and deformation of the interface with the ductile substrate differ depending on whether a low-viscosity and low-density layer is present at the base of the cover sequence, there is no marked systematic curvature of fold axes as seen in previous sandbox models for fault-bend or fault propagation folding during bulk shortening. Bulk shortening of a layered sequence with relatively thick individual layers above a ductile substrate promotes a regular and upright train of buckle folds, whereas thinner layers promote a more irregular distribution of buckle folds with variable vergence, style, and amplitude. Buckle folds above a ductile substrate progressively develop during bulk shortening from open and upright, to angular and tight, and may further develop into cuspate structures above relatively weak horizons. Relatively thick weak horizons within the layered sequence during bulk shortening interrupt regular fold patterns up structural section and allow out-of-phase folds to develop above and below the weak horizon.  相似文献   

17.
The Chauki, Mandi, Manil colony, Changpur, Khawas and Naghal areas are situated in between the limbs of Hazara Kashmir Syntaxis (HKS). HKS is the part of Himalayan fold and thrust belt that lies in sub-Himalayan domain. Seismically, this is an active zone. Early Miocene to Recent sedimentary rocks are exposed in the area. The stratigraphic units in Kashmir basin are the cover sequence of the Indian plate. These non-marine lithostratigraphic units are molasse deposits formed by the deposition of sediments coming from north carried by the rivers originated from higher Himalayas. Murree Formation of early Miocene age is the oldest rock unit in the studied area. Siwalik Group; Chinji, Nagri, Dhok Pathan and Soan formations of early Miocene to Pliocene and Mirpur Formation of Pleistocene age is exposed. The area is structurally deformed into folds and faults. The Sarda Sarhota syncline, Mandi syncline and Fagosh anticline are major folds in the area. These folds are isoclinal to open in nature, southwest or northeast verging and thrust direction is southwest or northeast. Major reverse faults are Riasi fault and Fagosh fault. The Changpur fault is a normal fault. Primary sedimentary structures present in the area are load cast, ripups and cross bedding. The facing of beds have been marked on the basis of these sedimentary structures.  相似文献   

18.
Hand-specimen and outcrop scale examples of folds are analyzed here to identify the characteristic signatures of fold-accommodation faults. We describe and analyze the geometric and kinematic relationships between folds and their associated faults in detail including the structural position and spatial distribution of faults within a fold, the displacement distribution along the faults by applying separation–distance plots for the outcrop scale examples, and the change of cut-off angle when the fault cut across folded layers. A comparison between fold-accommodation faults and fault related folds based on their separation–distribution plots and the problem of time sequence between faulting and folding are discussed in order to distinguish fold-accommodation faults from the reverse faults geometrically and kinematically similar to them. The analysis results show that fold-accommodation faults originate and terminate within a fold and usually do not modify the geometry of the fold because of their limited displacement. The out-of-syncline thrust has a diagnostically negative slope (separation value decreasing away from the upper fault tip) in the separation–distance graph. The change of cut-off angle and the spatial distribution of faults display a close relationship with the axial surface of the fold. Our analyses show that fold-accommodation faults are kinematically consistent with the flexural slip of the fold. The interbedded strata with competence contrast facilitate formation of fold-accommodation faults. These characteristic signatures are concluded as a set of primary identification criteria for fold-accommodation faults.  相似文献   

19.
The external massifs along the Appalachian orogen include Precambrian basement rocks with attached cover. To the northwest (cratonward), in the Appalachian foreland fold and thrust belt, Palaeozoic sedimentary rocks, but no basement rocks, are exposed; that belt was the subject of the classic debate about thin-skinned (deformed cover rocks detached from undeformed basement) and thick-skinned (basement deformed with attached cover) structural styles. Presently available data indicate detached cover rocks and thin-skinned style in the fold and thrust belt: large-scale thrusting occurred late in the orogenic history. In the external basement massifs, late Precambrian graben-fill sedimentary and volcanic rocks indicate early basement faults; and within the craton, steep basement faults bound graben blocks of Cambrian age. Distribution of known basement faults suggests that basement rocks beneath the fold and thrust belt may also be faulted. Local episodic synsedimentary structural movement through much of the Palaeozoic is documented by stratigraphy in the fold and thrust belt. Axes of early synsedimentary structures are approximately coincident with axes of late folds and thrust fault ramps, but stratigraphic data show that magnitude of the early structures was much less than that of the late structures. These relations suggest the interpretation that early low-magnitude structures formed in cover rocks over basement faults and that the early structures, or the basement faults, significantly influenced the geometry of later detachment structures during large-scale horizontal translation.  相似文献   

20.
鄂西渝东区构造裂缝发育特征及力学机制   总被引:1,自引:0,他引:1  
针对鄂西渝东区隔档式褶皱发育的构造特点,结合区域构造演化史,分别以隔档式褶皱和正弦曲线几何形态的褶皱建立模型,用有限元法模拟了褶皱不同构造部位的应力场分布特征。褶皱外侧为张应力集中区,内侧为压应力集中区,且应力矢量与地层产状平行,二者以中部既无明显挤压、亦无明显拉张的中和面为分界。通过野外露头和岩心观察,总结了鄂西渝东区构造裂缝发育的三种形式:具多层介质的非能干层中发育顺层裂缝;向斜内侧、背斜外侧的能干层中发育高角度剪切缝;背斜外侧、内侧具多层介质的非能干层中发育顺层裂缝与高角度缝共生的网状缝。这种特征与模拟结果呈现较高程度的一致性,可根据应力场模拟成果和裂缝发育地层的能干性进行合理解释。复向斜中的隆起区可作为页岩气勘探的重要目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号