首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports data on the chemical composition of surface waters (predominant ions and trace elements: approximately 40 parameters and elements) in the influence zone of the Severonikel Cu-Ni smelter in the town of Monchegorsk, Murmansk oblast. The long-continued discharge of waste waters has increased the mineralization and changed the proportions of ions in surface waters in the area: water in the sewage pond of the smelter is classed with brackish waters of the S 4 2? class, Na+ group. The sequence of major ions in water bodies under aerotechnogenic load retains the natural succession of major cations, but their concentrations slightly increase. The maximum concentration of ions in the surface waters of the Monchegorsk testing area were detected in wintertime, and the minimum contents occur during the high water period. Water bodies under aerotechnogenic load are characterized by average mineralization values much higher than is natural. The highest concentrations of Ni and Cu (two to three orders of magnitude higher than the assumed background values) and practically all trace elements were found in water bodies receiving waste waters from the smelter. The concentrations of Ni and other heavy metals in the Moncha River are much lower than in other water bodies but more than one order of magnitude higher than the assumed background concentrations.  相似文献   

2.
Natural zeolitic rocks consisting mainly of chabazite-phillipsite, clinoptilolite, and volcanic glass have been evaluated by means of batch methods to remove arsenic from waters with different mineralization degree (from deionized water to natural water with a specific conductivity of 1,600 μS cm− 1). Arsenic was previously spiked in the studied waters at concentrations of about 100 µg l− 1 to simulate actual cases. The compositional range of natural waters is representative of large hydrogeochemical regions around the world. The experiments were focussed on the application of natural common zeolitic rocks to water treatment for human consumption. The removal efficiency observed rises, in the better cases, 60–80% for chabazite-phillipsite raw materials whereas is 40–60% for clinoptilolite-bearing ones. The arsenic removal tends to increase with water mineralization degree, independently of the zeolitic rock type. A large zeolitic content in the chabazite-phillipsite raw materials increase the removal. Instead, the inverse situation is observed in the clinoptilolite-bearing rocks. The relevance of the quantitative mineralogical analysis, determining also the content of volcanic glass, as well as the use of natural waters in the removal tests has been demonstrated.  相似文献   

3.
Artesian basins contain the largest mineral water resources of the world. There are several types of mineral therapeutic water: sulfate, chloride, radon-rich, iron-rich waters, etc. Artesian basins occupy very large areas in Russia. However, genesis of water and brines is still not very clear. This is one of the most important hydrogeological problems that is being attempted to solve for many years. Most of the Russian hydrogeologists traditionally consider that these waters are of sedimentary origin. However, higher concentrations of bromine, iodine, iron, radon and other balneologically active components can be of different origin, for example, of infiltration or juvenile water. As an example, two areas will be considered – West-Siberian basin and East-European artesian area.West-Siberian artesian basin has very distinct latitudinal and vertical zonation. Latitudinal zonation is caused by climate changes from north to south. As for the vertical zonation, mineralization and chemical composition change in the vertical cross-section and from the periphery to the center within the same aquifer. The main mineral water resources of West-Siberian artesian basin are concentrated in Mesozoic rocks. Brackish waters and low-saturated brines without specific components are used for medical purposes. The most well-known spa is Karachi, which exploits chloride-hydrocarbonate brackish water. Sodium chloride bromine and iodine-bromine waters are used at other health resorts. It is possible to organize extraction of iodine from brines of Tcherkashinsko-Tobolskoe occurrence in Tumen region.East-European artesian area occupies most of the Russian Platform. The most widespread types of mineral water within the Russian Platform are sodium-chloride and magnesium-sulfate waters and brines. Such well-known spas, like Moscow mineral waters, Krainka, Staraya Russa and many others, belong to this type. Resources of these waters are definitely connected with sedimentogenic processes. The upper hydrodynamic zone contains iron-rich, hydrogen sulfide, and sometimes radon-rich water. Their formation is caused by the interaction between waters of infiltration and sedimentary genesis, or between infiltration waters and host rocks. One of the examples is Polustrovo iron-rich water. There are industrially valuable waters containing bromine and iodine.The resources of therapeutic water of sedimentary basins allow to increase balneological potential of spas in Russia.  相似文献   

4.
Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.  相似文献   

5.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

6.
Selected water analyses from the literature and current research in western Kenya are tabulated and the relationships between critical water quality parameters described. The waters are chemically characterised with Na as the dominant cation and bicarbonate as the dominant anion and, while waters of obviously different sources are represented, the available chemical data point to a general classification of bicarbonate-Na-rich waters, even for the saline waters of Lake Magadi. Potassium and chloride are among the less abundandt constituents. The concentration level of nutrients (nitrate, phosphate and sulphate) is mostly lower than maxium permissible drinking water levels, and salinity is not yet a serious problem in water bodies that are exploited for domestic and industrial purposes. Fluoride levels are variable with the higher values occurring in waters in and around the Rift Valley. Limited analytical data for I in waters from the Eldoret, Kiambu and Nairobi areas indicate concentrations well above world average figures. Mean values of some key water quality indicators such as total dissolved solids, total suspended solids and heavy metals are well below the threshold for contaminated water. These values are however exceeded by several factors in saline waters of lakes and in some springs. Significant organic pollution is reflected by mean values of parameters such as biochemical oxygen demand and faecal coliforms. The present quality of most of the water bodies in this part of the country is considered to be adequate at present for domestic and other purposes, though a gradual decrease in quality is evident from the recent upsurge in industrial activities in the subregion.  相似文献   

7.
黑色岩系型矿床是矿床学研究的一个重要对象,其成因由于成矿作用复杂而存在争议。为深入理解这种复杂性并为解决争议提供参考信息,通过深入剖析国内外这类矿床的典型实例,述评了矿床成因研究的现状与进展,并进一步提出了值得加强研究的方向。全球黑色岩系矿床分布广泛,矿床形成过程中受多种地质作用影响,并可主要归纳为3种:海水、热水与生物有机成矿作用。其中,海水和热水为成矿提供元素及有利的成矿条件(如还原的沉积环境)。相比而言,生物有机质的成矿作用则主要体现在对海水和/或热水提供的元素进行富集,并在合适条件下成矿。可见,这3种成矿作用的多元复合作用使得成矿过程极其复杂,这是导致很多矿床成因至今未完全确定的一个重要原因。今后可从两方面开展深化研究:一是揭示多期复杂成矿演化过程;二是剖析生物有机成矿作用。这些认识对沉积岩型矿床的研究同样具有普遍参考意义。  相似文献   

8.
Mineral and thermal waters are a special kind of ground-water, distinguished by specific chemical or physical properties such as higher mineralization, concentration of certain constituents, dissolved gas, radioactivity, or temperature. Hydrologically, they are a part of ground-water system. Mineral or thermal waters are usually connegted with specific and unique geological and tetuunic structure.. The classical territory of mineral and thermal waters is Europe, where these waters have been used for medicinal purposes since ancient times. The development of spas and increased demands for mineral water for spa operation necessitated increased knowledge of spring structures and the development of optimal balneotechnical works. These problems are discussed on the examples of the Karlovy Vary Spa (Karlsbad) and Jàchymov Spa (St. Jachimstha) in W Bohemia. The location of mineral springs in the Karlovy Vary Spa, the largest spa in Czechoslovakia, in a highly urbanized area required a thorough investigation and unique methods for capturing thermal water at a greater depth to provide a steady supply of thermal water and to protect the springs against pollution from the surface. The Jachymov radioactive thermal springs, which were accidentally discovered in a deep, subsurface uranium mine, present a unique problem of protecting the stability of spring's regime in a mining environment.  相似文献   

9.
Variations in the chemical composition of the surface waters near Khabarovsk are described for the period of 1896–2008. Seasonal variations in the chemical composition of the Amur and Ussuri waters are shown. The hydrochemical characteristics of the Kazakevicheva, Pryamaya, and Amurskaya passages are presented. The results obtained show that the concentrations of the main ions, as well as biogenic and organic substances, depend on the location of the maximal river runoff in the Amur basin. The impact of economic activities in the Middle Amur area on the dissolved matter content in the Amur and Ussuri rivers near Khabarovsk, as well as the distribution of these substance concentrations across the Amur River and the Amurskaya passage, is described. During the 50 years of regular observations, the mineralization of the Amur water in the winter low-water period has decreased by 1.5 times and the organic matter content has increased by 2 times.  相似文献   

10.
Interest in artificially recharging selected shallow sands in South Louisiana with fresh water has been stimulated by the desire to retard contamination of municipal groundwater supplies by brackish water, to retard ground subsidence and decrease pumping lifts, and to develop emergency subsurface supplies of potable water for communities dependent on surface waters susceptible to contamination. Results of field experiments, laboratory work, and model calculations demonstrate that ion exchange reactions involving clays dispersed in aquifer sands can be expected to modify significantly the composition of waters injected into Gulf Coast sediments. As little as 0.1 weight percent smectite (montmorillonite) can remove, by exchange with absorbed Na, a significant fraction of the dissolved Ca and Mg present in the injected water. The hardness of the water is thus reduced, which may be a desirable modification in water quality. Exchange occurs as fast as the fluids can be pumped into or out of the aquifer, and the water-softening capacity of the aquifer can be restored by allowing sodium-rich native pore waters to sweep back over the dispersed clays. Each acre of an aquifer 50 feet thick and containing 0.1 wt % smectite could soften half a million gallons of injected Mississippi River water. Many individual Gulf Coast aquifers underlie tens of thousands of acres, and their potential softening capacity is thus enormous. Additional exchange processes involving adjacent aquitard shales presumably will operate over long-term periods. It is possible that Gulf Coast aquifers will be used at some point in the future as processing plants to treat injected water to improve its quality for a variety of municipal and industrial purposes.  相似文献   

11.
利用对比分析的方法,在同一城市选择煤矿塌陷湖和不受煤矿开采影响的湖泊两种水域,通过一年四季的取样、监测,研究金藻及黄藻类生长的环境条件,找出了煤矿塌陷湖水中金藻及黄藻类难生长的原因是:排入塌陷湖中的矿井水透明度低、矿化度高、亚铁和硫化物含量较高,以及生活污水有机质、氨氮等含量高所导致。从而为煤矿塌陷区生态环境的生物学评价提供了参考。   相似文献   

12.
The Kaluganga River Estuary is one of the main sources of construction sand in Sri Lanka. Salt water intrusion along this estuary due to extensive sand mining has increased over the years. Thus, the focus of the current research is to understand the relationship between river sand mining, salt water intrusion, and the resultant effects on construction sand. Two surveys were conducted along the Kaluganga Estuary along an 11 km stretch from the river mouth at predetermined intervals to measure depth water quality profiles, and to collect sediment samples. These surveys were carried out during maximum spring tide; first in a dry period and then in a wet period, to understand hydrographic effects on the quality of river sands. Sand samples were analysed for absolute chloride content and grain size distribution. Results showed significant salt water intrusion during the dry period, averaging 2,307 μS cm?1 in surface waters throughout the surveyed 11 km stretch along with 3,818 μS cm?1 (average) in bottom waters up to 5.6 km upstream from the river mouth causing above normal chloride content in the bottom sandy sediments. The high chloride content in bottom sands was recorded up to 5.5 km from the river mouth making them unsuitable for construction purposes. However, during wet period, salt water intrusion levels in the bottom waters were insignificant (average 61 μS cm?1) and the chloride content in bottom sediments was very low. This study highlighted the requirement for regulations on river estuary sandmining for construction purposes.  相似文献   

13.
The geochemical study of bed rocks, underground and surface waters, and associated gases in the Fadeevskoe deposit of carbonated waters (Sikhote Alin, Primorye region) revealed that the chemical composition of these waters is formed in the zone of active water exchange in the limited area of the discharge zone, where hydro carbonate calcic waters with mineralization of up to 1 g/1 are formed in largely potassic-sodic rocks. Calculations of the saturation indices show that the mineral waters are characterized by the early stage of Ca saturation, being undersaturated with carbonates and aluminosilicates. The main factors that influence the water mineralization are the excess carbon dioxide in water and the circulation time. The oxygen and carbon isotope ratios indicate the atmospheric genesis of the aqueous component (δ2H = —117; δ18O = —15.4%o) and the carbon isotope content in the CO2 implies the mantle nature of the carbon dioxide (δ13C = -9.9%o).  相似文献   

14.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

15.
Toxicological and ecotoxicological assessment of water tracers   总被引:2,自引:3,他引:2  
Uncertainties regarding possible negative effects on the environment or on human health of authorizing tracing experiments in groundwater and surface waters led to the establishment of a Working Group at the German Federal Environmental Agency (Umweltbundesamt – UBA) for conducting a toxicological and ecotoxicological assessment. A total of 17 water tracers was assessed by the Working Group on the basis of the results of toxicological tests, the available literature, and the group's expert knowledge. In the future, tracers that pose a risk to the environment or to human health should no longer be used. Nevertheless, there are a number of tracers that could be used in hydrogeological and hydrological investigations for water-pollution-control purposes with no adverse environmental impact. Electronic Publication  相似文献   

16.
Lake sediment composition as an indicator of mineralization within the catchment area has found widespread application in recent years, particularly in Canada. Results have indicated, however, the existence of varying relationships between lake sediment composition and mineralization resulting from local features of the limnological environment. Accordingly it was considered appropriate to examine the nature of metal transport in the lake and stream environment, the partitioning of metal between the stream waters and stream sediments and between lake waters and lake sediments to obtain some understanding of the factors that affect the lake sediment-mineralization relationship. This investigation was carried out over an area containing Pb-Zn occurrences of supposed “Mississippi-Valley type” in Grenville and Paleozoic bedrock in southeastern Ontario.The headwater drainage systems comprise active streams, swamps, beaver ponds and small lake-bog systems giving way downstream to open lakes. The beaver swamps and seasonal swamps act as drainage sinks for metals, restricting the extent of geochemical dispersion in drainage systems adjacent to mineralization. Selective extraction analysis of bog, stream and lake sediments indicates that metals are preferentially concentrated with amorphous iron oxides, which readily adsorb and complex lead and zinc and are stable in the alkaline environment common in swamps adjacent to carbonate-hosted lead-zinc mineralization. The accumulation of lead and zinc with amorphous iron oxides combined with the adsorbing and chelating action of organic matter on lead and zinc makes organic-rich sediments from these small swampy areas an excellent sample medium for reflecting local mineralization. Down drainage anomalies of these elements can be accentuated by selective analysis for the amorphous iron oxide-held metal, involving selective extraction techniques.In contrast, within larger lake systems, the analysis of water samples indicates that geochemical dispersion in surface waters in the high pH environment (pH = 8.0) associated with the carbonate-hosted lead-zinc deposits is extremely restricted. In this environment, anomalous metal contents in lake water were not evident in lakes adjacent to mineralization, while anomalous lake sediment compositions exist only in lakes immediately adjacent to Pb-Zn mineralization and do not extend down the drainage system. The restricted dispersion necessitates basing geochemical reconnaissance surveys on collection and analysis of samples from the headwater organic-rich swamps at a higher sample density and resulting higher cost than in areas where a lower sample density is acceptable due to a wider dispersion.  相似文献   

17.
Thermal water samples and related young and fossil mineralization from a geothermal system at the northern margin of the Upper Rhine Graben have been investigated by combining hydrochemistry with stable and Sr isotope geochemistry. Actively discharging thermal springs and mineralization are present in a structural zone that extends over at least 60 km along strike, with two of the main centers of hydrothermal activity being Wiesbaden and Bad Nauheim. This setting provides the rare opportunity to link the chemistry and isotopic signatures of modern thermal waters directly with fossil mineralization dating back to at least 500–800 ka. The fossil thermal spring mineralization can be classified into two major types: barite-(pyrite) fracture filling associated with laterally-extensive silicification; and barite, goethite and silica impregnation mineralization in Tertiary sediments. Additionally, carbonatic sinters occur around active springs. Strontium isotope and trace element data suggest that mixing of a hot (>100 °C), deep-sourced thermal water with cooler groundwater from shallow aquifers is responsible for present-day thermal spring discharge and fossil mineralization. The correlation between both Sr and S isotope ratios and the elevation of the barite mineralization relative to the present-day water table in Wiesbaden is explained by mixing of deep-sourced thermal water having high 87Sr/86Sr and low δ34S with shallow groundwater of lower 87Sr/86Sr and higher δ34S. The Sr isotope data demonstrate that the hot thermal waters originate from an aquifer in the Variscan crystalline basement at depths of 3–5 km. The S isotope data show that impregnation-type mineralization is strongly influenced by mixing with SO4 that has high δ34S values. The fracture style mineralization formed by cooling of the thermal waters, whereas impregnation-type mineralization precipitated by mixing with SO4-rich groundwater percolating through the sediments.  相似文献   

18.
贺小元  王辉  刘欢 《地下水》2019,(1):62-63,71
在进行"陕西省陕北石炭—二叠纪煤田府谷矿区马家梁-房子坪勘查区普查"项目的地质及水工环1:2. 5万地质填图中,对府谷哈镇周围部分井、泉、水库及土壤进行了采样分析,采集水样共10件,其中水质简分析4件、水质环境分析4件、水质全分析2件,采集土壤样品4件。分析结果发现该区水质多属CO32-·HCO3-·SO42--Na+·Ca2+·Mg2+型,又根据Cl-、SO42-、Mg2+、Na+之间的关系计算得出,主要为重碳酸钠型和硫酸钠型水,矿化度介于138~1145 mg/L之间,平均约580. 43 mg/L,水质中重金属铅、镉及挥发酚、pH超标。土壤分析结果显示区内的汞含量基本都超标;土污染1、4的镉元素含量超标;土污染1的镉、汞、砷、铅、锌值与其他样品相比,都表现为高值超出标准值,说明贺家梁-范家梁一带土污染较为严重。  相似文献   

19.
 The present article is the second in a series of baseline water quality evaluation studies in parts of south-eastern Nigeria. Study results indicate that the water samples from the study are generally acidic, soft and fresh in addition to low sodium and salinity hazard. Regression equations indicate a good positive correlation between conductivity and Na, Ca, Mg and SO4. Ca-SO4 and Ca-Cl constitute the major facies in the area. Generally the waters in the area are good for most domestic and agricultural purposes. Received: 14 April 1997 · Accepted: 3 February 1998  相似文献   

20.
The study of spatial and temporal variations of some hydrochemical properties in the Oued Issen watershed, Morocco, has revealed their close relation to the area's lithologic and geologic characteristics and to variations in hydroclimatological cycles. High concentrations of sodium chloride are measured during flood periods, when the outcrops of the basin are leached by streams draining the rather dense hydrographic network. These variations depend also on the relative abundance of tributaries on both sides of the Oued, their respective contributions being hydrochemically very different: (1) northern-side tributaries, which mainly leach evaporitic terranes dating from the Late Triassic and Late Liassic periods and which are rich in gypsum and halite, increase the mineralization of the Oued Issen waters flowing toward the Abdelmoumen Dam; (2) the low salinity of water observed in the upstream portion of the watershed is due to dilution by waters from the southern-side tributaries, which are derived from snowmelt and the leaching of the high Paleozoic massif; (3) in the middle part of the basin, the increase in mineralization of the Oued Issen becomes substantial between the Abdelmoumen Dam and the Dkhila Dam, the next dam downstream, due to the absence of dilution by waters from the southern-side tributaries, which are sparse in this part of the basin. In addition, during flood periods, the outflow from the first dam is stopped. Thus, the main contribution of NaCl to the Oued is from the very salty Tirkou spring, which is situated downstream from the first dam. The geological characteristics of the basin have induced the development of high-salinity zones, which are particularly evident in the southwestern part of the basin in the vicinity of the confluence of the Oued Boulebaz with the Oued Issen. The discharge of very salty springs is controlled by faults that offset the formations that underlie the hydrographic network and degrade the quality of the Oued Issen. This water later recharges the unconfined aquifer along the Oued where it flows on the Oued Souss Plain. Received, July 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号