首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Situated in the inner zone of the Iberian massif, the Tormes gneiss dome is composed of two units with different lithological contents and metamorphic evolution. The upper unit consists of a thick sequence of low- to high-grade metasediments, ranging in age from Late Proterozoic to Silurian. The lower unit is a high-grade metamorphic complex composed mostly of granitic orthogneisses and minor amounts of metasediments. Four Variscan deformations are distinguished. At deep structural levels, the most prominent D1 ductile structures are recumbent anticlines with NE vergence, cored by orthogneisses, and separated by narrow synclines. These recumbent folds grade upward into less-flattened and NE-vergent steeper structures. The overall structure is that of a large-scale stacking of orthogneissic slices underlying a shortened and thickened sedimentary sequence that formed a huge orogenic wedge in this region. During the heterogeneous and ductile D2 deformation, the rheological behaviour of the orthogneisses and metasediments became similar. The vertical D2 shortening associated with a strong top-to-the-SE shearing in a large-scale subhorizontal shear zone folded the prior SW-dipping structures, developing SW-vergent folds with axes close to NW–SE L2 mineral and stretching lineations. D2 corresponds to post-collisional crustal thinning following D1 crustal thickening. The D3 and D4 late structures are much more localized and occurred under retrograde conditions, but have a significant effect on the final geometry of the metamorphic complex. This sequence of contractional and extensional deformative events permits a tectonic interpretation in the framework of the dynamic wedge theory based on the evolution in the time of the stress configuration applied to a portion of the crust.  相似文献   

2.
This paper combines geological knowledge and geophysical imagery at the crustal scale to model the 3D geometry of a segment of the Hercynian suture zone of western Europe in the Champtoceaux area (Brittany, France). The Champtoceaux complex consists of a stack of metamorphic nappes of gneisses and micaschists, with eclogite-bearing units. The exhumation of the complex, during early Carboniferous times, was accompanied by deformation during regional dextral strike–slip associated with a major Hercynian shear zone (the South Armorican Shear Zone, SASZ). Dextral shearing produced a km-scale antiformal structure with a steeply dipping axial plane and a steeply eastward plunging axis. Armor 2 deep seismic profile shows that the regional structure was cut by a set of faults with northward thrusting components. Based on the seismic constraint, direct 2D crustal-scale modelling was performed throughout the Champtoceaux fold on seven radial gravity profiles, also using geological data, and density measurements from field and drill-hole samples. The 3D integration of the cross-sections, the digitised geological map, and the structural information (foliation dips) insure the geometrical and topological consistency of all sources of data. The 2D information is interpolated to the whole 3D space using a geostatistical analysis. Finally, the 3D gravity contribution of the resulting model is computed taking into account densities for each modelled geological body and compared to the Bouguer anomaly. The final 3D model is thus compatible with the seismic and gravity data, as well as with geological data. Main geological results derived from the modelling are (i) the overall 3D geometry of the south dipping thrust system interpreted on the seismic profile emphasises northward thrusting and folding of the Champtoceaux complex which was coeval with strike–slip along the South Armorican Shear Zone; (ii) the gravity modelling suggests the presence of a relatively dense body below the Champtoceaux complex that could be interpreted as a result of relative uplift of midcrustal material during thrusting along the E–W trending wrench–thrust system; (iii) the northern limb of the Champtoceaux anticline is a relatively shallow feature; and (iv) Vigneux synkinematic granitic body is a laccolith sheared and rooted along the southern branch of the SASZ and spreads away from the strike–slip zone within weak country-rocks.  相似文献   

3.
The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 170 Ma, following the Triassic collision between the Sino-Korean and Yangtze cratons. The framework that controls the present spatial distribution of UHP and HP metamorphic rocks in particular displays the typical features of a Cordilleran-type metamorphic core complex, in which at least four regional-scale, shallow-dipping detachment zones are recognized. Each of these detachment zones corresponds to a pressure gap of 0.5 to 2.0 GPa. The detachment zones separate the rocks exposed in the region into several petrotectonic units with different P-T conditions. The geometry and kinematics of both the detachment zones and the petrotectonic units show that the exhumation of UHP and HP metamorphic rocks in the Dabie-Sulu region was achieved, at least in part, by non-coaxial ductile flow in the mul  相似文献   

4.
Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Yangtze cratons and subsequent polyphase exhumation histories of the UHP and IIP metamorphic rocks.  相似文献   

5.
The Lora del Río metamorphic core complex corresponds to the lowermost, high-grade block below a Hercynian extensional shear zone. A peculiarity of this sector is that exhumation of the metamorphic core was the result of the activity of two low-angle, approximately perpendicular shear zones: the main and the secondary shear zones, both of which are separating three structural levels with distinct tectonometamorphic imprints. The Lora del Río metamorphic core underwent rapid exhumation due to the combined action of both extensional shear zones. The Huéznar unit, which represents the median block, shows a complex evolution whereby the highest metamorphism occurs in relation to the secondary extensional structure, although most structures appear to be controlled by the main extensional shear zone. Metamorphism and deformation within the upper block (Los Miradores unit) are controlled by the underlying units. Recognition in the Ossa-Morena zone of extensional deformation processes (dated at 340 Ma), spatially and temporally related with the convergent deformations, can help in the establishment of comparisons and correlations with other sectors of the European Hercynian foldbelt.  相似文献   

6.
7.
《Geodinamica Acta》2013,26(5):309-329
The metamorphic basement of the Asinara island represents a key area of the Sardinia Variscan segment, because it displays an almost complete cross-section through the inner part of the Sardinia Variscan belt, where different tectono-metamorphic complexes have been juxtaposed along narrow belts of high-strain concentration. Detailed field mapping coupled with preliminary studies on the structural and metamorphic features of this small island, allow to draw a better picture of the structural frame issued from the Variscan collision in the inner zone of the belt. Three deformation phases related to crustal thickening in a compressive and transpressive, partitioned tectonic regime, followed by a later phase of extensional deformation have been recognised. In spite of a general HT/LP metamorphic overprint, linked to the post-collisional deformation phases, a relic Barrovian zoneography is still detectable. The Barrovian assemblages are preto syn-kinematic with respect to the D2 deformation phase, and pre-date the third, contractional tectonic event.

The HT/LP assemblage indicates a static growth of weakly deformed by the last deformation events. The complex geometry of the fabric associated to the D2 and D3 deformation events suggests an heterogenous deformation history with a monoclinic geometry characterized by switching of the stretching lineation orientation and a contrasting sense of displacement, probably controlled by a northward partitioned pure shear.  相似文献   

8.
提出一种基于多层DEM与似三棱柱体元(QTPV)的混合三维数据模型。模型包含顶点、线段(棱边、三角形边)、三角形、侧面四边形、似三棱柱体元和DEM 6个基本元素,同时包含点对象、线对象、面对象、体对象、复杂对象、空间对象等6个对象。设计了6个基本元素和2种地质对象的数据结构和它们之间的拓扑关系。研究了基于原始采样点和基于内插点的两种建模方法。以模拟数据和地质钻探数据对开发的原型系统进行验证。研究表明,基于多层DEM与似三棱柱体元的混合三维数据模型具有同时表达空间对象的表面和内部结构的能力,适合地质勘探领域的三维建模。  相似文献   

9.
Wang  Neubauer  Genser  & Yang 《地学学报》1998,10(5):260-267
Petrological, geochronological and structural data show that the eastern Dabie metamorphic complex resulted from two orogenic stages. Precursor rocks of the ultrahigh-pressure (UHP) and high-pressure (HP) units in the present hanging wall tectonic position were buried, penetratively deformed and subsequently exhumed by distributed, ESE-directed shearing during Triassic time. In contrast, rocks of the Dabie orthogneiss domes, now in a footwall tectonic position, were penetratively deformed during temperature-dominated, Early Cretaceous tectonic events, that are likely related to magmatic underplating. The Dabie orthogneiss domes and the UHP/HP units were juxtaposed during Early Cretaceous exhumation of Dabie orthogneiss domes by the formation of an ESE-directed low-angle ductile normal shear zone. Consequently, the UHP/HP units now represent an extensional allochthon in the hanging wall of the younger normal shear zone. The Cretaceous extensional structures are limited by boundary strike-slip faults. Consistent with the South China regional tectonic framework, ESE-directed lateral extrusion is considered to be the driving mechanism for extension and the present-day structure of the Dabie metamorphic complex.  相似文献   

10.
The Río San Juan metamorphic complex exposes a segment of a high-pressure subduction-accretionary complex built during Caribbean island arc-North America continental margin convergence. It is composed of accreted arc- and oceanic-derived metaigneous rocks, serpentinized peridotites and minor metasediments forming a structural pile. Combined detailed mapping, structural and metamorphic analysis, and geochronology show that the deformation can be divided into five main events (D1–D5). An early subduction-related D1 deformation and M1 metamorphism produced greenschist (mafic rocks of the Gaspar Hernández peridotite-tectonite), blueschist and eclogite (metamafic blocks in the Jagua Clara mélange), high-P epidote-amphibolite and eclogite (Cuaba unit), and lower blueschist and greenschist-facies conditions (Morrito unit). This was followed by M2 decompression and cooling in the blueschist, greenschist and low-P amphibolite-facies conditions. The shape of the retrograde P-T path, the age of the exhumation-related D2 structures, and the tectonic significance of D2 deformation are different in each structural unit. Published U–Pb and 40Ar/39Ar plateau ages and T-t/P-t estimations reveal diachronic Turonian-Coniacian to Maastrichtian retrograde M2 metamorphism in the different structural units of the complex, during a consistent D2 top-to-the-NE/ENE tectonic transport. Regionally, a similar top-to-the-ENE tectonic transport also took place in the metasedimentary nappes of the Samaná complex during the Eocene to earliest Miocene. This kinematic compatibility indicates a general northeastward progradation of deformation in the northern Caribbean convergent margin, as the successive tectonic incorporation of arc, oceanic and continental-derived terrains to the developing Caribbean subduction-accretionary complex took place. D3–D5 deformations are discontinuous and much less penetrative, recording the evolution from ductile to brittle conditions of deformation in the complex. The D3 event substantially modified the nappe-stack and produced open folds with amplitudes up to kilometer-scale. The Late Paleocene-Eocene D4 structures are ductile to ductile–brittle thrusts and inverse shear bands. D5 is a Tertiary, entirely brittle deformation that had considerable influence in the geometry of the whole complex. From the Miocene to the Present, it has been cut and laterally displaced by a D5 sinistral strike-slip fault system associated with the Septentrional fault zone.  相似文献   

11.
分块区域三维地质建模方法   总被引:3,自引:0,他引:3  
区域三维地质建模是区域三维地质调查的关键。在大量反复实践的基础上,提出了分块三维地质建模方法,该方法的主要步骤为:以断裂、岩体边界和不整合等为边界,把复杂的三维地质建模区域分解为内部构造相对简单的建模块或建模地质单元;分别对各建模块进行地质地球物理综合研究,编制深部地质剖面,揭示深部地质结构;采用基于剖面的建模方法按照全区统一的坐标系统构建三维地质模型;在完成全区所有建模块三维地质模型构建之后,把各个建模块的三维地质模型集成在统一的三维空间框架下,形成全区的三维地质模型。该方法具有能够简化三维地质建模过程、易于修改完善模型、易于集成模型等优势,能够克服常规的基于剖面的三维地质建模方法中存在的问题,突破了大规模区域三维地质建模的瓶颈。在本溪-临江深部地质调查中的应用表明,采用该方法可以有效构建研究区的三维地质模型,并能充分表达复杂的地下深部地质结构,为开展复杂地区大规模区域三维地质建模提供了一个重要途径。  相似文献   

12.
We present a high‐resolution conceptual hydrogeological model for complex basaltic volcanic islands based on Mayotte Island in the Comoros. Its geological structure and hydrogeological functioning are deduced from a large dataset: geological mapping, geophysics, some forty new boreholes, piezometric data, hydraulic conductivity, hydrochemical data, etc. We describe previously unknown deep cut‐and‐fill palaeovalleys. The resulting conceptual geological and hydrogeological model of the island is very different from the Hawaiian model, in that it lacks a low‐elevation basal aquifer and dyke‐impounded high‐level aquifers. It is closer to the Canary Islands model, which has, however, not yet been described at a high‐resolution scale. It does not have a continuous aquifer, but rather a discontinuous succession of perched aquifers separated by aquicludes and aquitards. This results more from the complex geological structure of the island, which has experienced several phases of volcanism, erosion and weathering, than from its age, but is also a result of the high‐resolution scale of the model. High‐resolution conceptual modelling is now necessary to solve problems of applied geology and hydrogeology.  相似文献   

13.
李璐  刘新根  吴蔚博 《岩土力学》2018,39(3):1056-1062
在基于钻孔数据进行三维地层建模方法中,钻孔样本间地层层序不一致导致建模时难以确定各地层的拓扑关系,快速准确地确定各地层层序和充分利用钻孔数据是建模的关键难点之一。拟通过综合考虑区域内所有钻孔数据,基于地质解释方法理论,以地层出现次数频率高原则进行全自动确定地层层序。首次引入子钻孔递归思想,利用表面建模方法,自下而上逐层创建三维地层模型,可确保钻孔数据不丢失且准确地应用于地层建模中,并能适应地层尖灭、地层超覆、透镜体等复杂地质构造。该方法地学意义明确,具有鲁棒性好、运行效率高及可操作性强等特点,算法已在同济曙光软件中实现,并已在多个实际地质建模工程中得到了验证。研究结果表明,该算法能充分利用已有钻孔信息,建模过程全自动完成,对复杂地层建模亦具有较强的适应性。  相似文献   

14.
东濮凹陷伸展连锁断层系统及其演化作用   总被引:2,自引:0,他引:2  
东濮凹陷NNE向的主干基底断层向深部延伸与深层的拆离滑脱断层衔接在一起,与诱导出的调节断层以不同的方式连接,构成东濮凹陷的伸展连锁断层系统。东濮凹陷不同区段的连锁断层形态表现出不同的几何学和运动学特征。北区兰聊主断层面表现为相对较缓的平面式形态,伸展连锁断层系统总体上为多米诺式半地堑系。中区伸展连锁断层系统总体上表现为大型铲式正断层上盘的一个不对称的地堑。南区兰聊主断层面表现为坡坪式形态,断陷结构相对复杂。东濮凹陷伸展连锁断层系统的演化大体分为4期,不同区带伸展连锁断层系统演化模式不同,对古近系沉积和石油地质条件有较大的影响。  相似文献   

15.
《Geodinamica Acta》2013,26(1-2):99-118
The Alpine Corsica (Corsica Island, France) is characterized by a stack of continent- and ocean-derived tectonic units, known as Schistes Lustrés complex. This complex is affected by deformation and metamorphic imprint achieved during Late Cretaceous – Early Tertiary subduction- related processes connected with the closure of the Ligure-Piemontese oceanic basin and subsequent continental collision. In the Schistes Lustrés complex, the Lento oceanic unit is characterized by four deformation phases, from D1 to D4 phase. The D1 phase, characterized by blueschist metamorphism, is regarded as related to coherent underplating in a subduction zone at a depth of about 25-30 km. The subsequent deformation phases can be referred to exhumation history, as suggested by the continuous decrease of metamorphic conditions. The transition from accretion to exhumation is represented by the D2 phase, achieved during the development of a duplex structure of accreted units. The D3 phase is in turn achieved by a further horizontal shortening, whereas the D4 phase is developed during an extensional event representing the final exhumation of the Lento unit.

On the whole, the data collected for the Lento unit suggest an history that include an accretion by coherent underplating followed by exhumation, more complex than previous described.  相似文献   

16.
南海北部珠江口盆地中段伸展构造模型及其动力学   总被引:1,自引:0,他引:1  
位于南海北部大陆边缘上的珠江口盆地发育NNE向、NE向、NW向、近EW向等多组基底断裂,盆地结构复杂,并表现出明显的时空差异性。本文基于珠江口盆地中段地震资料解释的构造样式的变化推断地壳中存在一条向南缓倾斜、呈坡坪式形态的拆离断层,古近系构造属于这条拆离断层上盘的伸展构造系统。北部的西江凹陷属于拆离断层伸展构造系统的头部,凹陷边界正断层铲式断层面形态向深层延伸并收敛在拆离断层面上,凹陷表现为半地堑“断陷”样式;中部的番禺低隆起对应于拆离断层的低角度断坪部位,拆离断层上盘断块的伸展位移导致两侧的恩平组超覆在低隆起上;南部的白云凹陷位于拆离断层的深部断坡部位,充填的文昌组和恩平组表现为“断坳”或“坳断”样式;南部隆起位于拆离断层深部断坪部位,其上盘发育的分支断层控制着荔湾凹陷古近系、新近系的发育并使之表现为复杂的断陷断坳构造样式。该模型强调拆离断层上盘与下盘、不同地壳结构层均发生不同程度的伸展变形,且伸展变形方式、应变量等存在时空差异,而拆离断层正是不同构造单元、不同地壳构造层之间的调节性构造面。总体上,拆离断层上盘以脆性伸展构造变形为主,分支断层控制不同构造单元古近纪的构造演化,下盘则是以韧性伸展变形为主,并拖曳上盘发生不均一的伸展应变;西江凹陷的伸展应变量大于拆离断层下盘的伸展应变量,白云凹陷的伸展应变量则小于拆离断层下盘的伸展应变量。以西江凹陷北部边缘的NE向铲式正断层为头部的拆离断层控制了文昌组沉积,但在恩平组沉积期被近EW向高角度正断层切割破坏而被遗弃,拆离断层系统的头部由西江凹陷北部边缘迁移至番禺低隆起。盆地结构及断裂系统的时空差异性受盆地基底先存构造、地壳与岩石圈结构及伸展量等多方面因素的影响,但主要是对软流圈流动及岩石圈热结构变化的响应。用软流圈由北西向南东流动拖曳上覆岩石圈发生伸展变形的动力学模型能合理地解释珠江口盆地中段古近系构造的形成和演化。  相似文献   

17.
一种基于似三棱柱体元的地质三维建模方法研究   总被引:4,自引:0,他引:4  
三堆空间建模方法是三堆地劫工程GIS研究的核心问题之一。提出一种基于似三棱柱体元的三堆数据模型,模型包含顶点、线段(棱边、三角形边)、三角形、侧面四边形、三棱柱体元5个基本元素。和点对象、线对象、面对象、体对象、复杂对象、空间对象等6个对象。设计了5个基本元素和3种地质对象的数据结构和它们之间的拓扑关系。以岩体和巷道为例。给出了似三棱柱体建模思路和算法。利用内蒙古某矿区实际钻孔资料和模拟巷道数据对所开发的系统原型进行验证。研究表明。基于似三棱柱体元的数据模型的优势在于可以表示空间对象的表面和内部结构。便于建模和节省存储空间,同时便于不规劓的自然地质体和规则勘探工程建模。  相似文献   

18.
大别山东段的变质地层格架   总被引:5,自引:0,他引:5  
上世纪80年代末以后完成的大别山区1∶5万区域地质调查,将大别山的中深变质杂岩解体为变质变形侵入岩和变质表壳岩两部分,但所建立的构造岩石/地层单位大多沿用了1∶20万区域地质调查的地层名称。与之同期,大别山超高压变质岩发现以来的地质研究也揭示出大别山中深变质岩的主体为正片麻岩,并以变质特征及其构造属性划分出4个构造单元。本文依据前人的地质调查和研究成果,将大别山的变质地层划分为4个岩石地层(构造岩石地层、构造岩石)单位,3个非正式岩石地层单位。论述了它们与区域地质调查所划分的地层单位的对比,以及与4个构造单元的对应关系。  相似文献   

19.
The continental material of the Saih Hatat window has been affected by a Late Cretaceous, obduction-related, HP-LT metamorphism below the Oman ophiolite. A high-rate exhumation process is witnessed by the Maastrichtian-Palaeocene onlap onto the blueschist-facies rocks. Drastic metamorphic omissions are documented between the lowest, eclogitic units and the overlying, blueschist-facies ones. Widespread late-metamorphic shear structures point to a top-to-the-NNE detachment, in opposition to the sense of the Late Cretaceous obduction. The inversion of the shearing sense occurred under similar, low temperature conditions in both the blueschist and eclogite-facies units. Admitting that these HP-LT metamorphic rocks formed progressively at various depth in the subducting Arabian margin, a two-stage extensional mechanism of exhumation is suggested: (i) early uplift of the eclogitic rocks up to the blueschists depth by ductile thinning or squeezing of a 'blind extensional allochthon'; (ii) exhumation of the whole HP-LT metamorphic core complex by inversion of the obduction sole-thrust and isostatic rebound of the lower plate.  相似文献   

20.
 Situated in the inner zone of the Variscan Iberian Massif, the Tormes Gneissic Dome offers a good opportunity for thermal modelling of orogenic crustal extension, because the P–T–t loops are well constrained by an extensive set of thermobarometric, structural and geochronological data. As an example of feedback between forward and inverse methods, the aim of this study was to establish one- and two-dimensional thermal models that reproduce the contrasting petrological P–T paths of two structural units separated by an extensional tectonic contact in the metamorphic complex, and to explain the spatial and temporary development of the low-pressure metamorphism in the rocks located just above this contact. In one dimension, the syn-extension path of the lower unit resulting from modelling is characterized by an isothermal decompression phase, followed by near isobaric cooling, which is typical of exhumed rocks. The upper unit path records a syn-extension near isobaric heating, more important in rocks just above the tectonic contact. Condensed isograds of low-pressure/high-temperature metamorphism in the basal upper unit are thus interpreted as a consequence of advective crustal extension and conductive upward heat transfer. In two dimensions, the delaminated simple shear geometric model of crustal extension explains the observed temperature rise in excess of 500  °C in the basal upper unit and is consistent with the spatial distribution of M2 low-pressure/high-temperature isograds. This demonstrates the important role of extensional structures produced during the collapse of the thickened crust in the thermal evolution. The heating phase, well explained with intermediate dip angle for extensional fault in the upper crust (45°) and finite extension of 75 km, is followed by cooling, thus reflecting normal erosional process. Received: 1 September 1998 / Accepted: 29 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号