首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辽西兴城—台里地区发育系列花岗质岩石,强烈构造变形特征均显示其具有韧性剪切带的特点。对剪切带北段进行详细宏微观构造解析,结合岩石变形强度差异性分析、有限应变测量、石英C轴EBSD测试以及古差异应力值估算等研究,结果表明剪切带内花岗质片麻岩和眼球状花岗质片麻岩具有NEE向左行剪切变形特征,变形岩石为S-L构造岩,应变类型属于平面应变,古差异应力值介于30~40 MPa之间。长石-石英矿物温度计以及石英C轴EBSD组构指示剪切带以中低温变形为主,温度在400℃~500℃,属绿片岩相变质,具中-低温韧性剪切带特征。韧性剪切带内普遍存在变形分解现象,弱变形带内岩石残斑含量较高,眼球状构造和S-C组构较为发育;强变形带岩石残斑含量较低,剪切面理较为发育,糜棱面理发育较弱或者不发育。  相似文献   

2.
We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20–77 MPa and a strain rate of 10−15–10−13 s−1 at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300–360 °C, and 200–250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint.  相似文献   

3.
Abstract

Four ductile shear zones were sampled in the autochthonous Thaya basement and the Upper Bíte? nappe (Moravian unit) at the Eastern margin of the Bohemian massif. In both studied units, the tectono-metamorphic evolution and the chemical mass transfer are different. Two deformational events are recognised: the first deformation stage under amphibolite facies conditions is overprinted by a second event under greenschist facies conditions.

The first deformation affected the western margin of the Thaya basement and the whole Bíte? nappe: microstructures are characterised by dynamic recrystallisation of feldspars and quartz, and occurrence of myrmekites and grain-boundary migration of quartz. None or weak chemical mass transfer is related to this medium to high temperature deformation. This deformation corresponds to the thrusting of Moldanubdian units on the Brunovistulian units (Moravian nappes and autochthonous Thaya basement).

The second deformation generated shear zones in the until then preserved Thaya basement and reactivated both shear zones of the western margin of the Thaya basement and those of the Bíte? nappe. This deformation is retrograde and mainly associated with chemical mass transfer: a decrease of CaO, FeO, FeO/Fe2O3 and an increase of MgO, K2O and H2O. These chemical changes are related to greenschist metamorphic reactions leading to the destabilisation of feldspars and the crystallisation of white micas and Ca-silicates. The large chemical mass transfer is associated with the circulation of a large volume of fluids. A model of progressive fluid circulation correlated with Variscan prograde and retrograde metamorphism during the collision of Moldanubian and Brunovistulian units is proposed.  相似文献   

4.
高德臻  魏荣珠 《地球科学》2000,25(3):232-236
通过区调填图在内蒙古固阳县北山新太古代石英闪长岩和中元古代英云闪长岩中发现了韧性剪切带.通过野外调查、应变测量及显微构造、电子探针等方法研究表明, 该韧性剪切带为两组呈共轭组合型式产出, 形成机制与西伯利亚板块和华北板块相互挤压作用有关, 为在地球较深层次、在压扁环境下的简单剪切, 形成时代为中元古代末期, 变质相为绿片岩相.   相似文献   

5.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

6.
郯庐断裂带中-南段走滑构造特征与变形规律   总被引:36,自引:13,他引:23       下载免费PDF全文
朱光  徐佑德  刘国生  王勇生  谢成龙 《地质科学》2006,41(2):226-241,255
在大别造山带东端和苏鲁造山带西端,郯庐断裂带存在着同造山期和早白垩世两期左旋走滑韧性剪切带,在张八岭隆起南段迄今为止只发现了早白垩世的走滑剪切带。这些剪切带由若干条小型韧性剪切带组成,带内糜棱岩都具有陡倾的糜棱面理和平缓的矿物拉伸线理。野外构造、显微构造及石英C轴组构皆指示了左旋走滑剪切指向。新生矿物组合和矿物变形行为分析显示大别山东端郯庐早、晚两期剪切带主要形成于中绿片岩相的变质温度环境,张八岭隆起南段剪切带主要形成于高绿片岩相的变质温度环境,苏鲁造山带西端郯庐早、晚两期剪切带则形成于高角闪岩相的变质温度环境。糜棱岩内基质中新生白云母的电子探针分析指示大别山东端和张八岭隆起南段出露的郯庐韧性剪切带形成于低压环境下,而苏鲁造山带西端的郯庐韧性剪切带形成于高压榴辉岩相环境。这些详细的构造研究显示:在华北与华南板块的碰撞造山期郯庐断裂带以左旋走滑构造型式存在,而在早白垩世太平洋构造域中它又再次发生了强烈的左行平移。  相似文献   

7.
甘肃阳山金矿是我国最大的金矿床,位于西秦岭造山带的陕甘川"金三角"地区。金矿成矿时代为早侏罗世,与燕山期斜长花岗斑岩有密切的成因联系。基于野外地质调查,本文对安昌河—观音坝断裂带构造岩进行了细致的显微构造研究,以期通过微观构造特征认识宏观断裂构造的活动规律。镜下观察表明断裂带内兼具大量的脆性与塑性显微变形,主要发育左行剪切,暗示该断裂为左行韧-脆性剪切带。断裂带内构造岩经历了高绿片岩相、低绿片岩相及低于绿片岩相的变质-变形过程,且断裂带内至少存在过三到四期构造变形,为断裂带曾发育"多期构造变形"提供依据。显微构造应力分析及岩层产状等密度图显示区域主压应力方向为NNW-NNE,是对印支期以来多期主应力方位的综合反映。据亚颗粒法及动态重结晶法计算的成矿前古应力差值为128.6~95.8 MPa,成矿期古应力差值为74.9~69.3 MPa,成矿后古应力差值为65.8 MPa。综合分析认为中—晚三叠世以来安昌河—观音坝断裂带变质相相变为高绿片岩相→低绿片岩相→低于绿片岩相,变形序列为韧性→韧-脆性→脆性,区域主应力大小发生了大→小的转变,主应力方位经历了SN向挤压→NE向挤压→NW及SN向挤压的转换。安昌河—音坝断裂带构造演化特征反映其经历了从深部到浅部逐渐抬升的过程。  相似文献   

8.
滇西无量山地区的构造变形和变质作用   总被引:1,自引:0,他引:1  
无量山构造带位于滇西兰坪-思茅盆地中段西侧北北西-南南东走向的复背斜。在复背斜中部发育北北西-南南东向的左旋走滑韧性剪切带。中部剪切带变质作用达绿帘角闪岩相的蓝晶石带高于绿片岩相黑云母带的围岩。用共生的黑云母-石榴石温压计计算得到中部剪切变质带西缘变质温度为600 ℃~650 ℃,压力为5.6 kba,东缘温度为550 ℃~600 ℃,压力为5 kba左右。结合同构造期石榴石变斑晶的环带成分和多硅白云母b0值的分析,首次在滇西提出该剪切变质带是进变质的,以不均一的、非连续的变质作用为主要特征,与区域变质作用不同。无量山中部韧性剪切变质带的进变质作用与剪切带中岩石的变形强度有关。岩石变形愈强,变形能就愈大,随之转化成的热量就愈大,该热能参与到岩石变质作用中,提高了岩石的变质程度。这一思路有可能成为研究变形与变质作用的一条有效途径。  相似文献   

9.
In the eastern Indian shield, a dextral strike-slip system juxtaposed the Archaean Singhbhum Province against the Proterozoic Eastern Ghats Belt at ∼490–470 Ma. Two WNW–ESE trending strands of the strike-slip system enclose a multiply deformed (D1 to D3) intervening domain called the Rengali Province, with D3 representing dextral shearing. In a granulite lens within the province, an early fabric (Sgr) was deformed by an amphibolite facies D1–D2 deformation continuum in the late Archaean time, forming cylindrical folds. In the surrounding quartzofeldspathic gneisses, quartzites and mica schists of the province, superimposition of syn-D3 shortening on D1-D2 folds generated complex non-cylindrical geometries; the granulites escaped D3 strain. Microstructures in the province-bounding shear zones confirm that D3 deformation was associated with mylonitization, dynamic recrystallization and greenschist facies metamorphism. In the quartzites, syn-D3 folds can be correlated with rotation of D1–D2 structures through the shortening zone of bounding dextral shears. Since the province-bounding shears form a step-over zone, the structural complexity within the Rengali Province arises from superposition of syn-D3 shortening structures on initially asympathetically oriented inherited cylindrical D1-D2 folds. Hydrous fluid channeling causing greenschist facies metamorphism and quartz vein emplacement accompanied D3 as the step-over zone was dilational in nature.  相似文献   

10.
劝农山地区位于长春市东南部,处于佳-伊断裂和西拉木伦河缝合带交汇处.详细野外调查发现,该区曾遭受强烈韧性剪切变形,剪切带内岩石普遍糜棱岩化,主要由下二叠统范家屯组(P1f)钙质糜棱岩与侵入其中的燕山期花岗质糜棱岩组成,变形程度处于初糜棱岩至糜棱岩之间,多具有糜棱结构.岩石应变类型主要为压扁型应变,偏一般压缩,为L=S型构造岩,指示其形成于挤压型剪切带的构造环境.多种宏微观韧性剪切变形标志,指示明显的左行剪切运动.电子探针方解石-白云石地质温度计、方解石和石英EBSD组构特征、方解石e双晶形态以及石英长石变形行为等均显示岩石具有低温塑性流变特点,变形环境不超过绿片岩相.剪切带内应变速率偏高,应变集中带应变速率最大,在10-6.95~10-8.89之间,远离强变形带应变速率在10-9.25~10-12.17之间,糜棱岩化作用过程中差异应力下限应大致为51.27~65.46 MPa,代表剪切带糜棱岩化作用为低温中等强度应变,在稍快的应变速率条件下形成.压溶扩散和双晶滑移为劝农山韧性剪切带变形初期的主要变形机制,随着递进变形,逐渐以双晶滑移和晶内滑移为主,递进变形晚期,局部强变形域内发生了粒间滑移.劝农山韧性剪切带形成与早白垩世中晚期伊泽纳崎板块NNW向高斜度斜向俯冲于欧亚大陆之下有关,是佳-伊断裂带左旋走滑事件的局部表现.   相似文献   

11.
舒兰北东向韧性剪切带位于佳木斯-伊通断裂带(佳-伊断裂带)中南段, 剪切带内糜棱岩具有明显左行走滑特征, 片麻理产状近NNE向.糜棱岩中长石有限应变Flinn图解判别岩石类型为L-S型构造岩, 属拉长型应变.石英C轴EBSD组构分析表明, 石英组构以中低温菱面为主, 滑移系为{0001} < 110>.剪切带内糜棱岩的剪应变为0.44, 不同方法计算所得运动学涡度值均大于0.95, 指示剪切变形以简单剪切为主.综合矿物变形温度计、石英C轴EBSD组构、石英的粒度-频数图及Kruhl温度计综合估计该韧性剪切带变形机制以位错蠕变机制为主, 变质相为低绿片岩相, 发生韧性变形和糜棱岩化温度范围在400~500 ℃之间.糜棱岩内石英动态重结晶新晶粒边界普遍具有锯齿状或港湾状结构, 利用分形方法对其重结晶新晶边界研究表明, 这些晶粒边界具有自相似性, 表现出分形特征, 分形维数值为1.195~1.220.根据石英重结晶粒径估算差应力值为24.35~27.59 MPa, 代表了舒兰韧性剪切带糜棱岩化作用过程的差异应力下限.使用不同实验方法估算、比较和分析了该剪切带古应变速率, 认为该速率应为10-12.00~10-13.18 s-1, 与区域性应变速率10-13.00~10-15.00 s-1对比, 说明舒兰韧性剪切带的应变速率与世界上大多数韧性剪切带中的糜棱岩应变速率一致, 是缓慢变形的结果, 其形成可能与早白垩世伊泽纳崎板块向欧亚大陆俯冲发生转向有关.   相似文献   

12.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

13.
The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D2 deformation are variable and have different shear directions that enable five D2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U–Pb SHRIMP zircon ages from a post-D2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen.U–Th–Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a “post-tectonic” granite yield 2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean continental crust. The extensive distribution of 2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen can only be explained by the collision of two continents if the continents fortuitously had the same protolith ages. We propose that a more likely scenario is that the protoliths of the mafic eclogites were erupted in a marginal basin setting as either oceanic crust, or as limited extrusions along the rifted margin of the Tanzanian Craton. The Usagaran Orogen may therefore reflect the mid-Palaeoproterozoic reassembly of a continental ribbon partially or completely rifted off the craton and separated from it by a marginal basin.  相似文献   

14.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

15.
A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure.Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10−12 and 10−14 s−1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.  相似文献   

16.
Textural and compositional changes affecting a quartzose metagabbro/metadiorite in a ductile shear zone which is part of the Early Palaeozoic (Famatinian) orogenic belt of the Western Sierras Pampeanas, Argentina, allow reconstruction of its tectono-metamorphic evolution as well as the metamorphic conditions achieved. On the basis of paragenetic associations and microfabrics, three overprinted deformation events are differentiated: a) a relict ductile event developed within the granulite facies, at temperatures exceeding 800 °C and pressures ≤5–5.5 kbar; b) a two-stage mylonitic deformation event under high-to medium-grade metamorphic conditions, at temperatures 500–700 °C and pressures between 6 and 7 kbar and c) a brittle deformation event developed at low greenschist facies below 400 °C. Evidence of the first event is preserved in the protolith although the subsequent deformation obliterated it partially. Slight modal and chemical changes were detected between the protolith and its mylonitic products. Deformation ages of the mylonites that vary from 441.9 ± 1.9 Ma to 438.7 ± 1.9 Ma are internally consistent and compatible with existing geological and geochronological data for the region, suggesting that during the Famatinian orogeny the western margin of Gondwana was characterized by several episodes of ductile deformation that varied in time and space.  相似文献   

17.
越城岭花岗岩体西侧片麻状花岗岩带主体是一条由韧性剪切作用形成的复合糜棱岩带,包括早期高绿片岩相条件下形成的糜棱片麻岩和晚期低绿片岩相条件下形成的糜棱岩。高绿片岩相韧性剪切带和低绿片岩相韧性剪切带具有基本一致的运动学性质,为滑脱型韧性剪切带,总体为在向NWW缓倾的糜棱面理上向SW方向滑动,并在平面上表现为左旋效应。根据构造对比研究,认为越城岭西侧滑脱型韧性剪切带形成于后造山阶段的伸展构造体制。  相似文献   

18.
Kilometer-scale, shallowly dipping, NW-striking top-to-the NE reverse and dextral strike-slip shear zones occur in metamorphic rocks of north Golpaygan. These metamorphic rocks are exposed at the NE margin of the central part of the Sanandaj–Sirjan zone in the hinterland of the Zagros orogen. NW-striking top-to-the NE normal shear zones were also found in a small part of the study area. Structural evidence of three deformation stages were found. Pre-mylonitization metamorphic mineral growth happened during D1. The main mylonitization event was during the D2 deformational event, following coaxial refolding, synchronous to retrograde metamorphism of amphibolite to greenschist facies in the Late Cretaceous–Paleocene, and before D3 folding and related mylonitization. We documented the systematic changes in the orientations of D2 linear fabrics especially stretching lineations and superimposition relations of structures. It is concluded that the dextral strike-slip and dip-slip shear zones were coeval kinematic domains of partitioned dextral transpression. The shallowly dipping reverse and strike-slip shear zones are compatible with partitioning in a very inclined transpressional model. Fabric relations reflect that the top-to-the NE normal shear zones were not produced during deformation partitioning of inclined dextral transpression. The Late Cretaceous–Paleocene strain partitioning was followed by later N–S shortening and NE-extension in the north Golpaygan area.  相似文献   

19.
Temperature and fluid content are critical parameters that control rock rheology and strain localization in the continental crust. Here, we determine by thermodynamic modelling the of localized ductile shearing during cooling of three different granitoid plutons: the Rieserferner and the Adamello plutons in the Italian Alps, and the Lake Edison pluton in the Sierra Nevada—USA. Shear zones exploited precursor joints, associated veins and alteration zones. and PT phase diagram sections were computed with Perple_X in the system MnO−Na2O−CaO −K2O−FeO−MgO−Al2O3−SiO2−H2O−Fe2O3. The phase diagram sections show that the nucleation of the brittle precursors (joints, veins) occurred at T» 450°C at fluid-saturated conditions. Localized ductile shearing likely occurred at temperature ranging between 420 and 460°C evolving from initially fluid-saturated to fluid-undersaturated conditions in a closed system. In this temperature range, granitoid rocks are potentially subject to a series of retrograde metamorphic reactions replacing the load-bearing feldspars with weaker phyllosilicates. Metamorphic reactions occurred in spatial association with the precursory structures, leading to localized shearing. Decreasing temperature and fluid-undersaturated conditions likely hampered progressive strain accommodation in shear zones by slowing down metamorphic reactions, thermally activated dislocation creep processes, fluid-mediated deformation mechanisms and weakening mechanisms. Polyphase granitoid ultramylonite and mylonitic quartz veins have been affected differently by the fluid-undersaturated conditions of the system, as consequence of different dominant deformation mechanisms and syn-kinematic paragenesis during localized shearing. Localized ductile shearing in cooling plutons effectively occurs in a limited temperature range (420–460°C) in which the strain accommodation capacity of the shear zone is controlled by the negative feedback between the cooling rate, the kinetics of metamorphic reactions and deformation mechanisms, and the consumption of the limited amount of available fluids.  相似文献   

20.
ABSTRACT

The Yao Shan complex, a massif near the southern segment of the Ailao Shan–Red River (ASRR) shear zone, bears important information on the structural framework of the massif and the kinematics of ductile shearing along the ASRR shear zone. In this contribution, structural, microstructural, quartz c-axis fabric, magnetic fabric, and geochronologic data are used to determine the structural framework of the Yao Shan massif and its tectonic implications for the ASRR shear zone. The Yao Shan complex is characterized by an overall linear A-type antiform that contains a core of high-grade metamorphic rocks with Palaeoproterozoic to Mesozoic protoliths and a mantle of Permo-Triassic low-grade rocks. Both the high-grade metamorphic core and low-grade Permo-Triassic rocks have experienced progressive ductile shearing. Anisotropy of magnetic susceptibility (AMS) results from 17 samples collected along the Xinjie–Pingbian section across the complex show that magnetic lineation (Kmax) and foliation (KmaxKint) are generally subparallel to the corresponding structural elements in the sheared rocks. The shape parameter E values of the magnetic ellipsoids are indicative of dominantly oblate and plane strain, but vary with protolith type and degree of strain among the various rock types. In agreement with the field and microstructural observations, the corrected degree of anisotropy (Pj) values reflect high shear strain in the core rocks and relatively low shear strain in the low-grade strata. A kinematic analysis based on structural and magnetic fabric data shows that both left- and right-lateral shear occurred during the deformation of the Yao Shan complex. Therefore, instead of being an element of the ASRR shear zone, the Yao Shan complex constitutes a crustal-scale inharmonic A-type fold with a fold axis parallel to the stretching lineation. Geochronologic data reveal that the folding occurred coevally with ductile shearing of the middle to lower crust between ca. 30 and 21 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号