首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We reconstruct the developing history of solar 10.7 cm radio flux (F10.7) since 1848, based on the yearly sunspot number and the variations. A relationship between the maximum and the linear regression slope of the first 3 years starting from minimum of the solar cycle is considered. We put forward a method of predicting the maximum of F10.7 by means of the slope-maximum relationship. Running tests for cycles 19 to 23 indicate that the method can properly predict the peak of F10.7.  相似文献   

2.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

3.
F10.7太阳辐射通量作为输入参数被广泛运用于大气经验模型、电离层模型等空间环境模型,其预报精度直接影响航天器轨道预报精度.采用时间序列法统计了太阳辐射通量F10.7指数和太阳黑子数(SSN)的关系,给出了两者之间的线性关系,在此基础上提出了一种基于长短时记忆神经网络(Long and Short Term Memory,LSTM)的预报方法,方法结合了54 d太阳辐射通量指数和SSN历史数据来对F10.7进行未来7 d短期预报,并与其他预报方法的预报结果进行了比较,结果表明:(1)所建短期预报7 d方法模型的性能优于美国空间天气预报中心(Space Weather Prediction Center, SWPC)的方法,预测值和观测值的相关系数(CC)达到0.96,同时其均方根误差约为11.62个太阳辐射通量单位(sfu),预报结果的均方根误差(RMSE)低于SWPC,下降约11%;(2)对预测的23、24周太阳活动年结果统计表明,太阳活动高年的第7 d F10.7指数预报平均绝对百分比误差(MAPE)最优可达12.9%以内,低年最优可达2...  相似文献   

4.
Joshi  Anita 《Solar physics》1999,185(2):397-403
Power-spectral analysis of cosmic-ray indices (CRI) data for the years 1989–1991 shows a 170-day periodicity of cosmic rays. The periodicity is related to a strong magnetic field. Power-spectral analysis of the long-term periodicity (11 years) of the CRI data for the years 1953–1997 shows that the period 1989–1991 is a unique one in the sense of the discussed pronounced periodicity. The 170-day periodicity of cosmic rays was interpreted in the base of six solar rotations (1 SR = 28.3-day periodicity of 10.7 cm solar radio flux) and may be connected to the instability of the solar core.  相似文献   

5.
We have analysed the observations of Solar Ca+K daily plage area for the period 1951-1977 to find evidence for the existence of short period (around 12–13 days) variation in the data. We divided the data in three groups—two corresponding to 10–20‡N and 10–20‡S latitude belts, and one corresponding to the total plage area—and used the power spectrum and autocorrelation techniques for the analysis. Both the techniques clearly show the 27-day periodicity due to solar rotation modulation in all the sets. A 12–13 day periodicity is seen in only 3, out of a total of 57 data sets when autocorrelation technique is used. A generally weak peak around 12–13 days is, however, seen in the power spectrum of all the data sets. The relative power in the 12–13 day peak is found to be significantly higher in those three data sets where the autocorrelation also shows this periodicity. On these two epochs the sunspot area distribution showed the existence of two distinct active longitudes separated by about 140–170 degrees. This seems to be the cause for the existence of a periodicity around 12–13 days in the autocorrelation and enhancement in the relative power of the 12–13 days peak in the power spectrum of these two epochs  相似文献   

6.
It is a common practice in the solar physics community to judge whether the measured photospheric vector magnetograms are force-free or not. In the previous work, it was studied how the measurement limitations such as the limited field of view, instrument sensitivity, and measurement error could affect the judgement of force-freeness based on the observed magnetograms. A further research on the influence of the spatial resolution on the force-freeness judgement is carried out in this article. The result shows that changing (mainly reducing) the spatial resolution has little influence on the force-freeness judgement in the ideal noiseless case. In the case when there are white noises in the magnetograms as those in the really observed magnetograms, it is opposite to the common intuition that properly reducing the spatial resolution can actually suppress the error, and significantly reduce the heavy influence of the measurement error on the force-freeness judgement, thus to enhance effectively the accuracy of the force-freeness judgement of magnetic field. This result sets up a theoretical foundation and an instructive guidance for judging the force-freeness of solar magnetic field correctly by using the observed magnetograms.  相似文献   

7.
The Solar Weather Browser (SWB) is a standalone, open-source software tool designed to display solar images with context overlays. It was originally developed for the space-weather forecast activities of the Solar Influence Data analysis Center (SIDC) but it is more generally well suited to display the output of solar-feature recognition methods. The SWB is also useful in the context of distributed solar-image archives, where it could play the role of a quick-look viewer. The SWB allows the user to visually browse large solar data sets and investigate the solar activity for a given date. It has a client – server design that minimizes the bandwidth from the network to the user’s monitor. The server processes the data using the SolarSoft library and distributes them through a Web server to which the SWB client connects. The client is readily available for Linux, Mac OS X, and Windows at . We discuss the software technology embedded in the SWB as well as its use for solar physics and space weather.  相似文献   

8.
Using a 1154 d long measurement of solar oscillations, obtained by the Global Oscillation Network Group from 1995 June 10 to 1998 August 6, we study the dependence of the accuracy of radial p-mode parameters on the duration of the observations. It is shown that relatively rare pulses of large power lead to the decrease of the accuracy achievable for a given duration of the observations and it is usually underestimated. The corresponding correction factor to the Libbrecht formula for a frequency accuracy estimation is provided. We have also investigated the influence of the solar activity on the mode parameters soon after the solar activity minimum. There is a clearly visible increase of the radial p-mode power in the beginning of the new solar cycle while the mode frequency variations are within the corresponding error bars.  相似文献   

9.
The outer layers of Sun-like stars are regions of rapid spatial variation which modulate the p-mode frequencies by partially reflecting the constituent acoustic waves. With the accuracy that has been achieved by current solar observations, and that is expected from imminent stellar observations, this modulation can be observed from the spectra of the low-degree modes. We present a new and simple theoretical calculation to determine the leading terms in an asymptotic expansion of the outer phase of these modes, which is determined by the structure of the surface layers of the star. Our procedure is to compare the stellar envelope with a plane-parallel polytropic envelope, which we regard as a smooth reference background state. Then we can isolate a seismic signature of the acoustic phase and relate it to the stratification of the outer layers of the convection zone. One can thereby constrain theories of convection that are used to construct the convection zones of the Sun and Sun-like stars. The accuracy of the diagnostic is tested in the solar case by comparing the predicted outer phase with an exact numerical calculation.  相似文献   

10.
Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long‐term solar activity. The data of the daily solar full‐disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full‐disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full‐disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full‐disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full‐disk magnetic activity of the Sun is the 10.7cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The 10.7cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.  相似文献   

12.
The known Rieger periodicity (ranging in literature from 150 up to 160 d) is obvious in numerous solar indices. Many subharmonic periodicities have also been observed (128-, 102-, 78- and 51-d) in flare, sunspot, radio bursts, neutrino flux and flow data, coined as Rieger-type periodicities (RTPs). Several attempts are focused to the discovery of their source, as well as the explanation of some intrinsic attributes that they present, such as their connection to extremely active flares, their temporal intermittency as well as their tendency to occur near solar maxima. In this paper, we link the X-ray flare observations made on Geosynchronous Operational Environmental Satellites (GOES) to the already existing theoretical Lou model, suggesting that the mechanism behind the RTPs is the Rossby-type waves. The enhanced data analysis methods used in this article (Scargle–Lomb periodogram and Weighted Wavelet Z-Transform) provide the proper resolution needed to argue that RTPs are present also in less energetic flares, contrary to what has been inferred from observations so far.  相似文献   

13.
利用Wilcox天文台1975年到2010年间的太阳磁场数据,分析了太阳平均磁场在太阳活动极大和极小时期的短时周期性.结果显示太阳磁场主要具有9 d、13.5 d、27 d左右的周期.在太阳活动极大时期,27 d左右周期最为显著,而在太阳活动极小时期最显著的周期为13.5 d左右(1984~1986年间的太阳活动极小时期除外).这些结果说明太阳的活动区域在活动极大和极小时期具有明显不同的分布.  相似文献   

14.
In this work we describe solar radius measurements made from 1972 with the São Paulo astrolabe. We find values of  959.52 ± 0.03 arcsec  for the visual data and  959.61 ± 0.05 arcsec  for the CCD data using a modified data acquisition system. We compare our results with other astrolabe measurements and with SOHO –MDI. Observations of the solar radius show contradictory results when we try to correlate changes in the diameter with the solar cycle. Our series is not correlated with the solar cycle but it shows a period of  13.4 ± 2.2 yr  . We have also compared our time series with other long-term measurements of solar radius along solar cycle 21 and analysed our measurements as a function of heliographic latitude. We do not find a significant solar oblateness.  相似文献   

15.
The running correlation coefficient between the solar cycle amplitudes and the max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with the cycle number, based on the smoothed monthly mean Group sunspot numbers available since 1610. A running average method is proposed to predict the size and length of a solar cycle by the use of the varying trend of the coefficients. It is found that, when a condition (that the correlation becomes stronger) is satisfied, the mean prediction error (16.1) is much smaller than when the condition is not satisfied (38.7). This result can be explained by the fact that the prediction must fall on the regression line and increase the strength of the correlation. The method itself can also indicate whether the prediction is reasonable or not. To obtain a reasonable prediction, it is more important to search.for a running correlation coefficient whose varying trend satisfies the proposed condition, and the result does not depend so much on the size of the correlation coefficient. As an application, the peak sunspot number of cycle 24 is estimated as 140.4±15.7, and the peak as May 2012± 11 months.  相似文献   

16.
The flare index of the current solar cycle 22 is analysed to detect intermediate-term periodicities from Sep. 1, 1986 to Dec. 31, 1991. Power spectral analysis of the time series of solar flare index data reveals a periodicity around 73 and 53 days. We find that a periodicity of 73 days was in operation from 1988 November to the end of 1991 December. We also find that when the 73-day periodicity or the 154-day periodicity is in operation, the flare index is well correlated with the relative sunspot numbers. As a conclusion, we do not expect to see a resumption of the 154-day or 73-day periodicity, but we do expect only one of the periodicity near the integral multiples of 25d.8 in the next solar cycles.  相似文献   

17.
The hemispheric coupling phenomenon of solar activity cycle was discovered as early as the mid-20th century, and it is one of the most common topic in the long-term spatio-temporal evolution of the Sun, while the observational features and physical mechanism of hemispheric coupling have not been completely understood. The theoretical model of solar magnetohydrodynamics driven by this phenomenon is helpful in studying the basic information of the spatio-temporal evolution of solar activity cycle, and is also of great value to the short- and medium-term forecast of solar activity as well as the space weather. Here, we first give the discovery and observational history of the hemispheric coupling of solar activity. And then, the basic observational features of hemispheric coupling at different spatio-temporal scales and their possible mechanism are summarized. Finally, we give a discussion about the important unresolved issues and development trends in this important field.  相似文献   

18.
An analysis is described which can derive optical thicknesses and associated quantities from measured intensities and linewidths using convenient expressions for photon escape probabilities and for opacity-broadened line halfwidths. An associated analysis of the effect of observational errors is provided. The analysis treats intensities and linewidths independently so that internal consistency of results can provide a measure of observational accuracy, which is shown here to be a stringent requirement. As examples, first applications are made to Si  II lines in a solar prominence and to some high-resolution observations of the solar He  II 303.78-Å resonance line.  相似文献   

19.
In this study we use the ordinal logistic regression method to establish a prediction model, which estimates the probability for each solar active region to produce X-, M-, or C-class flares during the next 1-day time period. The three predictive parameters are (1) the total unsigned magnetic flux T flux, which is a measure of an active region’s size, (2) the length of the strong-gradient neutral line L gnl, which describes the global nonpotentiality of an active region, and (3) the total magnetic dissipation E diss, which is another proxy of an active region’s nonpotentiality. These parameters are all derived from SOHO MDI magnetograms. The ordinal response variable is the different level of solar flare magnitude. By analyzing 174 active regions, L gnl is proven to be the most powerful predictor, if only one predictor is chosen. Compared with the current prediction methods used by the Solar Monitor at the Solar Data Analysis Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC), the ordinal logistic model using L gnl, T flux, and E diss as predictors demonstrated its automatic functionality, simplicity, and fairly high prediction accuracy. To our knowledge, this is the first time the ordinal logistic regression model has been used in solar physics to predict solar flares.  相似文献   

20.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号