首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The geochemical cycles of iron and sulphur in marine sediments are strongly intertwined and give rise to a complex network of redox and precipitation reactions. Bioturbation refers to all modes of transport of particles and solutes induced by larger organisms, and in the present-day seafloor, bioturbation is one of the most important factors controlling the biogeochemical cycling of iron and sulphur. To better understand how bioturbation controls Fe and S cycling, we developed reactive transport model of a coastal sediment impacted by faunal activity. Subsequently, we performed a model sensitivity analysis, separately investigating the two different transport modes of bioturbation, i.e. bio-mixing (solid particle transport) and bio-irrigation (enhanced solute transport). This analysis reveals that bio-mixing and bio-irrigation have distinct—and largely opposing effects on both the iron and sulphur cycles. Bio-mixing enhances transport between the oxic and suboxic zones, thus promoting the reduction of oxidised species (e.g. iron oxyhydroxides) and the oxidation of reduced species (e.g. iron sulphides). Through the re-oxidation of iron sulphides, bio-mixing strongly enhances the recycling of Fe and S between their reduced and oxidised states. Bio-irrigation on the other hand removes reduced solutes, i.e. ferrous iron and free sulphide, from the sediment pore water. These reduced species are then reoxidised in the overlying water and not recycled within the sediment column, which leads to a decrease in Fe and S recycling. Overall, our results demonstrate that the ecology of the macrofauna (inducing bio-mixing or bio-irrigation, or both) matters when assessing their impact on sediment geochemistry. This finding seems particularly relevant for sedimentary cycling across Cambrian transition, when benthic fauna started colonizing and reworking the seafloor.  相似文献   

2.
The effects of freshwater infaunal invertebrates on sediment geochemical properties were studied through an experimental approach using indoor microcosms during a 56-day experiment. The bioturbating organisms were tubificid worms, which consume sediment at depth and deposit undigested material at the sediment?Cwater interface. Bioturbation intensity was determined using fluorescent tracers, and the distribution of redox-sensitive compounds was studied from replicate experimental units handled 7, 14, 21, 28 and 56?days after tubificid colonization. Worm activity transferred reduced particles and pore water at the sediment surface at a rate of 0.14?cm?day?1. Compared to control experimental units, this recycled material represented at the end a several centimetre-thick layer enriched in water content, dissolved nitrate and sulphate, and depleted in oxygen, ammonium and dissolved Mn(II). Tubificids consumed O2 in bottom water, so that the sediment was anoxic, allowing a direct flux of dissolved reduced species into overlying water. Lower ammonium and Mn(II) concentrations and fluxes in anoxic sediment possibly resulted from a decrease in anaerobic microbial metabolism due to competition for labile organic carbon with tubificids. Higher sulphate concentration resulted from burial of surface waters with particle at the sediment surface, but not from bio-irrigation of burrows. Nitrate was produced in anoxic condition, as observed in almost every mixed modern sediments.  相似文献   

3.
The relative mobility of nuclides of Pb, Th, Pu, and Cs, which are widely used as geochemical tracers for sedimentation and bioturbation. was investigated in artificial microcosm tanks (MERL) and in Narragansett Bay. Their mobility was characterized by their removal rates from the water column, their affinity toward particles and their degree of penetration into the surface sediments. Pb, Th, and Pu transport was controlled predominantly by the affinity of these elements to particles, and the transport parameters of the particles themselves (i.e. sediment resuspension and mixing rates). Because of its low distribution coefficient, transport of Cs was controlled by molecular diffusion through pore water in the winter, while in summer, Cs transport was enhanced due to bioturbation. The increase with depth of the CsPu ratio in core profiles of MERL and Narragansett Bay sediments is thus caused primarily by the higher mobility of Cs.  相似文献   

4.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

5.
The total concentration of I is commonly higher in surface terrigenous sediments relative to more deeply buried material. Diagenetic release, loss of dissolved I during burial, and back-reaction of I with the solid phase under oxidizing conditions contribute to I enrichment near the sediment/water interface. In order to differentiate between scavenging of dissolved I by organic matter or metal oxides, the diagenetic behavior of I was examined in the Fe-poor carbonate sediments of Florida Bay, Florida. In this environment I is released by organic decomposition at I/C ratios similar to terrigenous environments (~0.5 mmole/mole), transported to the oxygenated sediment/water interface, and lost to the overlying water. The dissolved I flux from these deposits is roughly equivalent to the production rate within the deposit (~10 μmole/m2/day at 28°C). No significant enrichment is observed in the solid phase.Dissolved iodine transport within the sediment column may also be controlled by non-steady-state lateral diffusion into burrows. These observations, together with laboratory experiments which demonstrate IO?3 scavenging by Fe-oxyhydroxides at pH ≤ 8, imply that enrichment of I in terrigenous surface sediments results predominantly from the initial oxidation of I? to IO?3 by microorganisms, followed by sorption on Fe oxides. Upon burial and reduction during anaerobic decomposition, this metal-associated I is released to solution, in a manner similar to phosphate.  相似文献   

6.
Bioturbation refers to the mixing of sediment particles resulting from benthic faunal activity. It is the dominant particle mixing process in most marine sediments and exerts an important control on diagenetic processes. In models, bioturbation is usually treated as a diffusive process where the biodiffusion coefficient (Db) characterizes the biological mixing intensity. Biodiffusion coefficients are classically computed by fitting a diffusive model to vertical profiles of particle-bound radioisotopes. One peculiar observation is tracer-dependence: Db values from short-lived tracers tend to be larger than those obtained from long-lived tracers from the same site. Recent theoretical work, based on random walk theory and Lattice Automaton Bioturbation Simulations (LABS), has suggested that this tracer-dependence is simply a model artifact and has concluded that the biodiffusion model is not applicable to the short observational time scales associated with short-lived radioisotopes. Here we have compiled a global dataset of Db values obtained from different radiotracers to assess tracer-dependence from a data perspective. Tracer-dependence is significant in low-mixing environments like slope and deep-sea sediments, but is not present in intensely mixed coastal areas. Tracer-dependence is absent when the number of mixing events is larger than 20, or the potential length scale is greater than 0.5 cm. Roughly this comes down to tracer-derived Db values greater than 2 cm2 yr−1. This condition is met for 68%, 50%, and 8% of published Db values obtained from coastal, continental slope, and abyssal environments, respectively. These results show that short-lived radioisotopes are suitable to quantify biodiffusion mixing in sedimentary environments featuring intense bioturbation.  相似文献   

7.
A dialysis technique has been developed from which whole sediment diffusion coefficients that include the effect of microbially-mediated reactions can be determined in situ. Application of the technique shows that the diffusion of both dissolved sulphate and total dissolved CO2 (transported primarily as bicarbonate) is related to the changing porosity of a fine-grained marine sediment. Added to this, the transport of dissolved sulphate is significantly affected by the microbial reduction of the pool available for diffusion. In contrast, the diffusion of a far larger pool of total dissolved CO2 is not noticeably affected by microbial activity.  相似文献   

8.
Suspended-sediment and water samples were collected from San Francisco Bay in 1991 during low river discharge and after spring rains. All samples were analyzed for organophosphate, carbamate, and organochlorine pesticides; petroleum hydrocarbons; biomarkers; and polynuclear aromatic hydrocarbons. The objectives were to determine the concentrations of these contaminants in water and suspended sediment during two different hydrologic conditions and to determine partition coefficients of the contaminants between water and sediment. Concentrations of hydrophobic contaminants, such as polynuclear aromatic hydrocarbons, varied with location of sample collection, riverine discharge, and tidal cycle. Concentrations of hydrophobic contaminants in suspended sediments were highest during low river discharge but became diluted as agricultural soils entered the bay after spring rains. Polynuclear aromatic hydrocarbons defined as dissolved in the water column were not detected. The concentrations sorbed on suspended sediments were variable and were dependent on sediment transport patterns in the bay. In contrast, the relatively hydrophilic organophosphate pesticides, such as chlorpyrifos and diazinon, has a more uniform concentration in suspended sediment. These pesticides were detected only after spring rains. Most of the measured diazinon, at least 98% for all samples, was in the dissolved phase. Measured partition coefficients for diazinon generally were uniform, which suggests that suspended-sediment concentrations were close to equilibrium with dissolved concentrations. The concentration of diazinon sorbed to suspended sediments, at any given sampling site, was driven primarily by the more abundant solution concentration. The concentrations of diazinon sorbed to suspended sediments, therefore, were independent of the patterns of sediment movement.  相似文献   

9.
Sediments, sediment trap material, dominant surface plankton and collected fecal material were sampled concurrently with surface seawater in a coastal Mediterranean ecosystem and analyzed for non-volatile hydrocarbons and chlorinated hydrocarbons. Results showed consistent partitioning of hydrocarbon classes between dissolved and particulate phases of surface waters which appeared to be related to component solubility and particle availability. Analysis of biological materials showed the biota were important not only in packaging residues into large, fast sinking particles, but also in modifying the composition of components through metabolism and selective incorporation into body tissues and feces. Apparent sedimentation rate was calculated by analysis of 210Pb in sediment core samples and used to estimate average deposition rates of organics to the sea/sediment interface. The flux of particles through 100 m, as measured in the trap material in this sampling interval, was sufficient to balance most of the petroleum input to the sediments but accounted for only 17% of the average flux of PCBs to the sediments, and virtually none of the more soluble chlorinated hydrocarbon flux. Vertical transport via large fecal material compared to average background particles was seasonally low corresponding to a seasonal minimum in plankton biomass in late summer. Results show that hydrocarbon residues transported long distances away from input sources are highly modified, pointing to the geochemical significance of physical-chemical partitioning between seawater phases, incorporation into organisms and fecal material and biological/chemical degradation.  相似文献   

10.
Massive sediment deposition on the Mississippi River Delta establishes reducing conditions sufficient to bring about Mn dissolution in the top millimeters of sediment. As a result, significant fluxes of dissolved Mn pass from the Delta sediments to the overlying water column. This process is examined by study of chemical partitioning of Mn in river particulates and Delta sediments and from interstitial water chemistry. Remobilized Mn is actively transported away from the Delta area with aluminosilicate detritus thereby providing “excess” Mn to the deep Gulf of Mexico at the expense of the Delta sediments.  相似文献   

11.
Laboratory experiments indicate that clay particles of the <2-üm fraction can be considerably degraded by the bivalve Mytilus edulis: dickite, kaolinite, smectite, chlorite and illite particles are partially dissolved and rounded by the digestive processes. Structural changes and a decrease in crystallinity of kaolinites, dickites and illites are striking. Investigations of clay minerals from tidal flat sediments highly populated by marine invertebrates, from marine suspensions and samples from profiles across Mytilis edulis beds on the North Sea coast of Germany show, however, that these materials have a uniform mineral composition. This uniformity of clay mineralogy can be explained by the hydrodynamic conditions in the nearshore area, where tidal currents and waves cause a periodic resuspension and transport of sediments introduced into the Wadden Sea from different sources (glacial, fluviatile). Processes of bioturbation also redistribute the sedimentary material. These mixing processes effectively erase any evidence of local enrichment of the biogenically degraded clays. However, the disordered clays should react more sensitively (i.e. have higher adsorption capacities for organic substances, hydroxides and metals) in sediments than untreated materials, so that biodegradation is of basic importance for clay diagenesis. During these processes, Pb, V, Ni and Fe are dissolved from the digested particles.  相似文献   

12.
Tin-mine tailings containing high concentrations of Sn, Cu, Zn, Fe, Mn, As, and W are discharged into the Red River of cornwall, England and are then transported into St. Ives Bay under normal flow conditions. Most of the tin-bearing particles in the fluvial sediments are smaller than 170 μm, but tin-bearing composite grains or mineral grains with tin interspersed in the crystal lattices also occur in coarser size fractions. Tin distribution in the sediments is controlledby: (1) the distance from the source of the tailings, and (2) the concentration processes operating on the river bed. Suspended sediment and sediment transported by saltation filtered from river water samples also showed high concentrations of metals although, in contrast to the bottom sediments, they vary within a narrow range. Distributions of Cu, Zn, Fe, As, and Pb in the filtered sediments probably are related to the physical and chemical behavior of their sulphide minerals during fluvial transportation. A regional stream-sediment geochemical reconnaissance survey for tin did not show the highest concentration in the Red River; this indicated that in other rivers and streams tin reconcentration by selective removal of light minerals had taken place in the bottom sediments after mining operations had ceased. These rivers and streams also can transport large quantitiies of land-derived sediment including tin-mine tailings discharged into them when mines were operating. The minimum distance of tin transported by the Red River is at least 10 km; however, most of the tin was derived from mine tailings and is considered to be unnatural.  相似文献   

13.
Data on the composition of the absorbed complex of riverine solid substances and its transformation in marine environments obtained from field observations and experimental investigations are systematized and generalized. Average values of the specific surface of the riverine suspended particulates (~20 m2/g) and the total exchange capacity of solid substances of the continental runoff (~28 mg-equiv/100 g or 280 g-equiv/t of the transported terrigenous material) are determined. It is shown that the composition of the absorbed complex in the riverine suspended particulates, as well as bottom sediments of rivers and inland water bodies differs principally from that of bottom sediments in oceans and seas: Ca dominates in the first case; Na, in the second case. When the riverine terrigenous material enters oceans and seas, the composition of the absorbed complex is subjected to the ion-exchange transformation reflected in the replacement of exchange Ca (~80%) mainly by Na and also by K and Mg of seawater. This process is responsible for the influx of 45.5 Mt/yr of dissolved Ca to ocean and the removal of 37.3, 12.8, and 3.9 Mt/yr of Na, K, and Mg, respectively. The relative transport of Ca, Na, K, and Mg to ocean with the river runoff is +7.5,–12.3,–22.4, and–2.6%, respectively.  相似文献   

14.
15.
Known effects of bioturbation by common polychaetes (Nereis spp. and Arenicola marina) in Northern European coastal waters on sediment carbon diagenesis is summarized and assessed. The physical impact of irrigation and reworking activity of the involved polychaete species is evaluated and related to their basic biology. Based on past and present experimental work, it is concluded that effects of bioturbation on carbon diagenesis from manipulated laboratory experiments cannot be directly extrapolated to in situ conditions. The 45–260% flux (e.g., CO2 release) enhancement found in the laboratory is much higher than usually observed in the field (10–25%). Thus, the faunal induced enhancement of microbial carbon oxidation in natural sediments instead causes a reduction of the organic matter inventory rather than an increased release of CO2 across the sediment/water interface. The relative decrease in organic inventory (G b /G u) is inversely related to the relative increase in microbial capacity for organic matter decay (k b /k u). The equilibrium is controlled by the balance between organic input (deposition of organic matter at the sediment surface) and the intensity of bioturbation. Introduction of oxygen to subsurface sediment and removal of metabolites are considered the two most important underlying mechanisms for the stimulation of carbon oxidation by burrowing fauna. Introduction of oxygen to deep sediment layers of low microbial activity, either by downward irrigation transport of overlying oxic water or by upward reworking transport of sediment to the oxic water column will increase carbon oxidation of anaerobically refractory organic matter. It appears that the irrigation effect is larger than and to a higher degree dependent on animal density than the reworking effect. Enhancement of anaerobic carbon oxidation by removal of metabolites (reduced diffusion scale) may cause a significant increase in total sediment metabolism. This is caused by three possible mechanisms: (i) combined mineralization and biological uptake; (ii) combined mineralization and abiogenic precipitation; and (iii) alleviation of metabolite inhibition. Finally, some suggestions for future work on bioturbation effects are presented, including: (i) experimental verification of metabolite inhibition in bioturbated sediments; (ii) mapping and quantification of the role of metals as electron acceptors in bioturbated sediments; and (iii) identification of microbial community composition by the use of new molecular biological techniques. These three topics are not intended to cover all unresolved aspects of bioturbation, but should rather be considered a list of obvious gaps in our knowledge and present new and appealing approaches.  相似文献   

16.
Sediment diffusion during overbank flows   总被引:5,自引:0,他引:5  
Distinctive overbank sediments deposited since European settlement on the floodplain of the Brandywine Creek, Pennsylvania, are used to calibrate and test a diffusion model of overbank deposition. The predictions of the model can be calibrated to reproduce the topography of the post-settlement lithosome with an average error of 7%. The model also correctly predicts the decrease in mean grain size away from the channel. The model greatly underestimates the ability of floodwaters to transport sand away from the channel. Apparently, sand is transported across the floodplain by bedload transport and by advective suspended sediment transport as well as by diffusion. If flow duration data for 1912–1981 and the present rating curve for the Brandywine Creek at Chadds Ford, Pennsylvania, are assumed to apply throughout the post-settlement period, the model may be used to estimate palaeohydraulic characteristics of post-settlement floods. Calculations indicate that 212 post-settlement floods covered the floodplain to an average depth of 1.6 m, transported an average excess suspended sediment concentration of 6200 ppm, and deposited an average thickness of 1.4 cm of sediment on levees next to the channel.  相似文献   

17.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

18.
When a dam is constructed on a river to store water, sediments transported by the water flow are also stored and reservoir capacity is gradually reduced by sediment accumulation. Prediction of sediment distribution in reservoirs is an important issue for dam designers to determine the reservoir active storage capacity, outlet sill elevation, dam stability, recreational facilities, and backwater conditions. The main objective of this study is to develop the most reliable parameters of sedimentation that are directly or indirectly influencing in the equations and measured dataset. For validation of the proposed parameters, data of 40 reservoir sets gathered from different reliable sources, rather than focusing entirely on bed-load equations. Artificial neural network (ANNs) method was used to validate this study. Several graphs and statistical analysis were presented to emphasize the influencing effect of those parameters that were detected by ANNs and are directly controlling the error in the bed-load sediment flux using measured particles datasets.  相似文献   

19.
20.
In the classical view of fine sediment transport and deposition in streams, particles are expected to be removed from flowing water simply by direct sedimentation onto the streambed. However, recent research has demonstrated that fine sediments can propagate into pore spaces in the streambed due to hyporheic exchange and be removed by a combination of physical and chemical processes. This behaviour can significantly alter fine sediment size distributions during in-stream sediment transport because the physical transport of fine particles and their attachment to bed sediment grains are both a function of the particle size. Herein, we present model simulations for deposition of suspended sediments with a bimodal size distribution. We also applied this approach to analyse the results of laboratory flume observations of suspended sediment deposition. Results from model simulations and flume experiments clearly show that the rate of particle deposition increases with increasing particle size. Thus, the larger particles are preferentially removed from mixtures and there is a fining of the mixed suspensions over time. Both particle deposition mechanisms, i.e. particle sedimentation and filtration, contribute to the fining of the mixed fine particle suspensions over time, and their effects are clearly demonstrated using the fundamental process-based model. These results clearly demonstrate the effects of stream-subsurface exchange on the temporal evolution of the suspended fine sediment size distribution in downstream transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号