首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L−1 within the Sacramento River to 39.9 mg L−1 at the outfall from an island drain (median 3.0 mg L−1), while lignin concentrations ranged from 3.0 μg L−1 within the Sacramento River to 111 μg L−1 at the outfall from an island drain (median 11.6 μg L−1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)−1 at an island drain to 0.84 mg (100 mg OC)−1 for a wetland (median 0.36 mg (100 mg OC)−1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized landscape features, and is also the first to indicate a significant negative correlation between lignin and DOC bioavailability within environmental samples. Based upon observed trends: (1) Delta features exhibit significant spatial variability in organic chemical composition, and (2) localized Delta features appear to exert strong controls on terrigenous DOC as it passes through the Delta and is exported into the Pacific Ocean.  相似文献   

2.
Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L−1) to summer irrigation (5.14 mg L−1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC−1 increasing to 0.31 mg 100 mg OC−1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments (r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration (r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm (r2 = 0.57) and spectral slope (r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary.  相似文献   

3.
Organic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC yields exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from ? 32.8 to ? 26.2‰ during low water level and from ? 30.1 to ? 27.2‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km? 2 year? 1 for the DOC and from 4.8 to 19.6 t km? 2 year? 1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets.  相似文献   

4.
Transport of dissolved organic carbon (DOC) in four river systems in different physiographic regions of the United States was related to link magnitude by a power function, log Y = ?0.84 + 1.24 log X. Multiple linear regression indicated that discharge, watershed area, and link magnitude explained almost all variation in DOC transport. For purposes of ecosystem comparison, link magnitude appeared superior to other classification systems, such as stream order.In two of the river systems, the largest fraction of DOC was transported in the spring. A third has a winter transport maximum; the last had bimodal spring and fall maxima.Streams transporting similar total amounts of DOC may vary widely in DOC concentration (mg. 1?1). Particulate organic matter concentration was not simply related to that of DOC.Ranges and means of DOC concentration, mean DOC: POC ratios, annual load of transported DOC as well as annual watershed DOC output were tabulated for 45 streams and rivers, representing a broad range of stream systems and physiographic regions. Mean DOC concentration for these 45 waterways ranged from 0.7 to 28 mg. 1?1. The very low DOC values are found in undisturbed streams; many of the higher values are associated with larger streams influenced by human activities. Most DOC outputs fell within the range 0.21–5.42 metric tons. km?2.yr?1; mean DOC:POC ranged between 0.09 and 70.A comparison was made among several biomes of the ratio of experted DOC to watershed gross and net primary production. DOC, while playing a major role in aquatic ecosystem organic budgets, appears to be of little significance in the nutrient balance of watersheds.  相似文献   

5.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

6.
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultrafiltration into 1–30 kDa (HDOM) and 30 kDa–0.2 μm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH) was used to release and quantify lipids and lignin phenols. Stable carbon isotopes, fatty acids and lignin content indicated shifts in sources with terrigenous material in the river and turbid region and a predominantly algal/planktonic signal in the lower estuary and coastal ocean. Thermochemolysis with TMAH released significant amounts of short chain fatty acids (C9–C13), not seen by traditional alkaline hydrolysis, which appear to be associated with the macromolecular matrix. Lignin phenol distributions in HDOM, VHDOM and particles followed predicted sources with higher concentrations in the river and turbid region of the estuary and lower concentrations in the coastal ocean. TOM comprised 12% of HDOM within the coastal ocean and up to 73% of HDOM within the turbid region of the estuary. In the coastal ocean, TOM from high molecular weight DOM comprised 4% of total DOC. The annual flux of TOM from the Delaware Estuary to the coastal ocean was estimated at 2.0×1010 g OC year−1 and suggests that temperate estuaries such as Delaware Bay can be significant sources of TOM on a regional scale.  相似文献   

7.
The contents of different organic matter components and dissolved organic matter (DOM) release kinetics of the sediments from the middle and lower reaches of the Yangtze River region were investigated, and their relationships discussed. The results show that organic C (OC) ranged from 8.14 to 43.65 g kg−1, dissolved organic C (DOC) from 0.38 to 1.38 g kg−1, active organic C (AOC) from 1.12 to 4.45 g kg−1, heavy fraction organic C (HFOC) from 6.86 to 39.08 g kg−1, accounting for 2.42-9.34%, 8.66-29.72% and 84.29-93.18% of OC, respectively. With increasing of OC content the ratios of DOC to OC and AOC to OC decreased. The contents of AOC, DOC, light fraction organic C (LFOC) and their contribution ratios to OC in studied sediments were higher than those reported in soils. The DOM release process of the studied sediments includes rapid and slow stages, and the rapid release occurred within 30 min, mainly in 5 min. The DOM release kinetic data in this investigation can be best fitted by the Power Function model. The correlations between total N (TN), total P (TP), OC, DOC, AOC, LFOC, HFOC and the DOM release kinetic parameters (k, c, a, b, rate30) of the sediments were significant. There were also significant correlations between TN, TP, OC, DOC, LFOC and HFOC in sediments. So the DOM release from sediment was not only related to the OC content, but also related to the organic matter composition characteristics, especially the contents of DOC, AOC and LFOC.  相似文献   

8.
Arctic landscapes are believed to be highly sensitive to climate change and accelerated disturbance of permafrost is expected to significantly impact the rate of carbon cycling. While half the global soil organic matter (SOM) is estimated to reside in Arctic soils, projected warmer temperatures and permafrost disturbance will release much of this SOM into waterways in the form of dissolved organic matter (DOM). The spring thaw and subsequent flushing of soils releases the highest contributions of DOM annually but has historically been undersampled due to the difficulties of sampling during this period. In this study, passive samplers were placed throughout paired High Arctic watersheds during the duration of the 2008 spring flush in Nunavut, Canada. The watersheds are very similar with the exception of widespread active layer detachments (ALDs) that occurred within one of the catchments during a period of elevated temperatures in the summer of 2007. DOM samples were analyzed for structural and spectral characteristics via nuclear magnetic resonance (NMR) and fluorescence spectroscopy as well as vulnerability to degradation with simulated solar exposure. Lignin-derived phenols were further assessed utilizing copper(II) oxide (CuO) oxidation and gas chromatography/mass spectrometry (GC/MS). The samples were found to have very low dissolved lignin phenol content (∼0.07% of DOC) and appear to originate from primarily non-woody angiosperm vegetation. The acid/aldehyde ratios for dissolved vanillyl phenols were found to be high (up to 3.6), indicating the presence of highly oxidized lignin. Differences between DOM released from the ALD vs. the undisturbed watershed suggest that these shallow detachment slides have significantly impacted the quality of Arctic DOM. Although material released from the disturbed catchment was found to be highly oxidized, DOM in the lake into which this catchment drained had chemical characteristics indicating high contributions from microbial and/or primary productivity. The resulting pool of dissolved carbon within the lake appears to be more biologically- and photochemically-labile than material from the undisturbed system. These disturbances may have implications for projected climate warming; sustained elevated temperatures would likely perpetuate widespread ALDs and further affect carbon cycling in this environment.  相似文献   

9.
Terrigenous organic matter (TOM) transfer from a watershed to a lake plays a key role in contaminants fate and greenhouse gazes emission in these aquatic ecosystems. In this study, we linked physiographic and vegetation characteristics of a watershed with TOM nature deposited in lake sediments. TOM was characterized using lignin biomarkers as indicators of TOM sources and state of degradation. Geographical information system (GIS) also allowed us to integrate and describe the landscape morpho-edaphic characteristics of a defined drainage basin. Combining these tools we found a significant and positive relationship (R2 = 0.65, p < 0.002) between mean slope of the watershed and the terrigenous fraction estimated by Λ8 in recent sediments. The mean slope also correlated with the composition of TOM in recent sediments as P/(V + S) and 3,5Bd/V ratios significantly decreased with the steepness of the watersheds (R2 = 0.57, p < 0.021 and R2 = 0.71, p < 0.004, respectively). More precisely, areas with slopes comprised between 4° and 10° have a major influence on TOM inputs to lakes. The vegetation composition of each watershed influenced the composition of recent sediments of the sampled lakes. The increasing presence of angiosperm trees in the watershed influenced the export of TOM to the lake as Λ8 increased significantly with the presence of this type of vegetation (R2 = 0.44, p < 0.019). A similar relationship was also observed with S/V ratios, an indicator of angiosperm sources for TOM. The type of vegetation also greatly influenced the degradation state of OM. In this study, we were able to determine that low-sloped areas (0-2°) act as buffer zones for lignin inputs and by extension for TOM loading to sediments. The relative contribution of TOM from the soil organic horizons also increased in steeper watersheds. This study has significant implications in our understanding of the fate of TOM in lacustrine ecosystems.  相似文献   

10.
Here we report on the temporal changes in the composition of dissolved organic carbon (DOC) collected in the tidal freshwater region of the lower Mississippi River. Lignin-phenols, bulk stable carbon isotopes, compound-specific isotope analyses (CSIA) and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight dissolved organic matter (HMW DOM) at one station in the lower river over 6 different flow regimes in 1998 and 1999. It was estimated that the annual input of DOC delivered to the Gulf of Mexico from the Mississippi River was of 3.1 × 10−3 Pg, which represents 1.2% of the total global input of DOC from rivers to the ocean. Average DOC and HMW DOC were 489 ±163 and 115 ± 47 μM, respectively. 13C-NMR spectra revealed considerably more aliphatic structures than aromatic carbons in HMW DOC. Lignin phenols were significantly 13C-depleted with respect to bulk HMW DOM indicating that C4 grass inputs to the HMW DOM were not significant. It is speculated that C4 organic matter in the river is not being converted (via microbial decay) to HMW DOM as readily as C3 organic matter is, because of the association of C4 organic matter with finer sediments. The predominantly aliphatic 13C NMR signature of HMW DOM suggests that autochthonous production in the river may be more important as a source of DOC than previously thought. Increases in nutrient loading and decreases in the suspended load (because of dams) in the Mississippi River, as well as other large rivers around the world, has resulted in significant changes in the sources and overall cycling of riverine DOC.  相似文献   

11.
The concentrations of total suspended sediments (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC) were measured in water samples taken monthly in the Apure, Caura and Orinoco rivers during a hydrological cycle (between Sept. 2007 and Aug. 2008). The DOC concentration values ranged between 1.5 and 6.8 mgC l−1 in the Apure River; 2.07 and 4.9 mgC l−1 in the Caura River and 1.66 and 5.35 mgC l−1 in the Orinoco River. The mean concentration of DOC was 3.9 mgC l−1 in the Apure River, 3.24 mgC l−1 in the Caura River and 2.92 mgC l−1 in the Orinoco River at Puerto Ordaz. The three rivers showed a similar temporal pattern in the concentrations of DOC, with higher DOC values during the increasing branch of the hydrograph due to wash-out processes of the organic material stored in soils. The mean concentration values of POC were 1.33 mgC l−1; 0.77 mgC l−1 and 0.91 mgC l−1 in the Apure, Caura and Orinoco rivers, respectively. The inverse relationship found between the percentage in weight of the POC and the concentrations of TSS in the three rivers fits a logarithmic model, as it has been previously reported for other worldwide rivers. The POC concentrations in the Orinoco River showed a positive relationship with the TSS, suggesting that the POC in the Orinoco is the result of terrestrially organic matter. Although the fluxes of organic carbon (OC) in the three studied rivers are dependent on the values of water discharge, the fluxes of DOC during the increasing branch of the hydrograph are higher than those found during the decreasing stage, due to the yield of organic material accumulated in soils during the preceding dry season. The mean annual flux of total organic carbon (TOC) of the Orinoco River at Puerto Ordaz was about 4.27 × 106 TonC yr−1. Of this, 3.28 × 106 TonC yr−1 (77%) represents the flux of DOC and about 0.99 TonC yr−1 (23%) represents the flux of POC. The mean annual input of TOC from the Apure River to the Orinoco River was about 4.92 × 105 TonC yr−1 (11.5%), while the contribution of TOC from the Caura River to the Orinoco River was estimated at 3.05 × 105 TonC yr−1 (7.1%).The values of annual transport of TOC calculated for the Apure, Caura and Orinoco rivers were lower than those reported twenty years ago. This could be related to interannual variations of precipitation in the Orinoco Basin, due to runoff variations can have a strong effect on the fluxes of OC from land to rivers.  相似文献   

12.
Brazil has extensive sugar cane monocultures, which significantly alter hydrogeochemical material fluxes. We studied dissolved organic matter (OM) fluxes in the Manguaba lagoon-estuary system, which drains a sugar cane monoculture-dominated hinterland and discharges into the Atlantic coastal ocean. The OM fluxes into the lagoon originate from baseflow, field runoff and sugar cane factory effluents. In the study, dissolved organic carbon (DOC) concentration, δ13C DOC and UV absorbance were analysed along a freshwater-seawater salinity gradient that encompasses river (DOC 9-11 mg l−1, δ13C −22.2‰ to −25.5‰); lagoon (4-11 mg l−1, −20.5‰ to −24.8‰); estuary (3-9 mg l−1, −22.6‰ to −25.3‰) and coastal waters (1.64 mg l−1, −21‰) with different intra-seasonal runoff conditions. We used the carbon isotope data to quantify the sugar cane derived DOC. Where river water meets brackish lagoon water, substantial loss of DOC occurs during rainy conditions, when suspended sediment from eroded fields in the river is very high. During dry weather, at much lower suspension levels, DOC increases, however, presumably from addition of photolysed resuspended sedimentary OM. In the estuary, mixing of DOC is strictly conservative. Ca. 1/3 of riverine DOM discharged into the lagoon has a sugar cane source. Within the lagoon on avg. 20% of the bulk DOM is comprised of sugar cane DOM, whereas during heavy rainfall the amount increases to 31%, due to intensified drainage flow and soil erosion. In the estuary, 14-26% is of sugar cane origin. The sugar cane-derived component follows the mixing patterns of bulk DOM.  相似文献   

13.
The patterns of dissolved organic matter (DOM) fluorescence properties were examined in a Precambrian shield stream over a seven-month field study. Unique spatial and temporal patterns of simultaneous changes were observed in dissolved organic carbon concentration (DOC), humic-like fluorescence intensity, maximum excitation and emission wavelengths and fluorescence index (the ratio of the emission intensity at a wavelength of 450 nm to that at 500 nm at an excitation wavelength of 370 nm). The spatial change indicates the alteration of DOM along the length of the stream, and temporal change corresponded to a drought event in August. In contrast to humic-like fluorescence, the protein-like fluorescence shows considerable variability, suggesting its ephemeral nature. There were strong relationships between humic-like fluorescence intensity, fluorescence index, maximum Ex/Em wavelengths, DOC concentration and molecular size of DOM. This study has significant implications to the understanding of the nature and biogeochemical cycling of DOM.  相似文献   

14.
Polycyclic aromatic hydrocarbon (PAH) biota-sediment accumulation factors (BSAF) were quantified in sediments from two sites in southeastern Louisiana in a 14 d microcosm study usingPalaemonetes pugio, andRangia cuneata and two radiolabeled PAHs, phenanthrene and benzo[a]pyrene (b[a]p). For both PAHs studied, mean BSAFs were significantly higher (p<0.0001) in both organisms in sediments from Bayou Trepagnier, (BSAF=0.628 g OC g TLE−1), a brackish swamp, compared to Pass Fourchon (0.065 g OC g TLE−1), a coastal salt marsh. In order to explain observed patterns in BSAFs, organic carbon-normalized PAH distribution coefficients between the sediment and freely dissolved phases (KOC)OBS were determined as well as the various geochemical variables of particulate and dissolved organic matter (POM and DOM, respectively). These included analyses of particle surface area, total organic carbon (TOC), carbon to nitrogen ratios (C∶N), and dissolved organic carbon (DOC). Bayou Trepagnier was higher in surface area, TOC, C∶N, as well as DOC suggesting that the difference in BSAFs may be attributed to compositional differences in POM and DOM between sites. We can not exclude the possibility that other factors (such as differences in organism behavior resulting from contrasting sediment characteristics) were responsible for BSAFs varying between the two sites. Phenanthrene BSAFs were typically higher than b[a]p BSAFs, suggesting contaminants were limited in their desorption from sediment particles as a function of PAH molecular weight. Mean BSAFs for both PAHs were higher on Day 7 than on Day 14. The reason for this decrease is unclear, but did not appear to be due to organisms becoming increasingly stressed in the microcosms. Visual observations indicated that animals remained feeding while no decreases in organism total lipid levels were detected. The trends in BSAFs between sites and over the time course of this experiment suggest that contaminant bioaccumulation in estuarine systems should not be considered to be an equilibrium process.  相似文献   

15.
The distribution, variability and chemical behaviour of dissolved organic carbon (DOC) was investigated over 212 years in the Severn Estuary and Bristol Channel, UK. The concentrations of riverine DOC (3.1–7.8 mg C l?1) covaried with river flow and were invariably conservative in this turbid slowly flushing (~200 days) estuary, indicating that any microbial degradation, chemical flocculation or adsorption processes do not affect the flux of riverine DOC through the estuary. The DOC inputs from the Severn (1.7–2.7 × 1010 g Cyr?1) and other rivers (2.6–3.4 × 1010 g Cyr?1) are the principal sources of DOC in the estuary and correspond to an export of 0.7–1.1% of the terrestrial productivity from the river catchment to the ocean. This export rate is in accord with recent predictions derived from global compilations of organic inputs from rivers and would imply that the global flux of riverine DOC could be as high as 7.8 × 1014 g Cyr?1 which is 5 times greater than some previous estimates.The geochemical significance of a conservative delivery of riverine DOC to the ocean is that irrespective of which flux estimate is considered, such river inputs would make a significant contribution (~SO%) to oceanic DOC, and that the steady-state oceanic DOC flux would have to be significantly greater than present estimates (2.9 × 1014 g Cyr?1) which are based on a mean radio carbon age of 3400 yr.An alternative, more realistic DOC flux model, which assumes a polydisperse age distribution about the mean age, is shown to yield the higher oceanic DOC fluxes required. Flocculation and adsorption processes would remove less than 10% and 0.2% respectively of riverine DOC in estuaries.  相似文献   

16.
Tropical small mountainous rivers (SMRs) are increasingly recognized for their role in the global export of dissolved organic carbon (DOC) to the oceans. Here we utilize the Isthmus of Panama as an ideal place to provide first-order estimates of DOC yields across a wide assemblage of bedrock lithologies and land cover practices. Samples for dissolved organic carbon (DOC) analysis were collected across Panama along an E–W transect from the central Panama area to the Costa Rican border for 24 mainstem rivers, 3 large tributary rivers, and one headwater stream. Sampling occurred during both the wet and the dry seasons. DOC concentrations during the wet season are higher than during the dry season in all but three of the rivers. Concentrations vary greatly from river to river and from season to season, with values as low as 0.64 mg l−1 to greater than >25 mg l−1 with the highest concentrations observed for the rivers draining Tertiary marine sedimentary rocks in the Burica and Azuero peninsulas. DOC yields from Panamanian rivers (2.29–7.97 tons/km2/y) are similar to or slightly lower than those determined for other tropical SMR systems. Areas underlain by Tertiary aged sediments exhibited significantly higher mean DOC yields compared to their igneous counterparts, despite maintaining substantially lower aboveground carbon densities, suggesting the important influence of lithology. Finally, regression analyses between DOC yields and select watershed parameters revealed a negative and statistically significant relationship with maximum and mean gradient suggesting lower soil retention times may be linked to lower DOC yields.  相似文献   

17.
Fractionation by ultra-filtration of the dissolved organic material (DOM) in the River Beaulieu, with typical concentrations of dissolved organic carbon (DOC) of 7–8 mg C/l, showed it to be mainly in the nominal molecular weight range of 103–105, with 16–23% of the total DOC in the fraction > 105. The molecular weight distribution of DOM in the more alkaline River Test (average DOC, 2 mg C/l) was similar. In the River Beaulieu water, containing 136–314 βg Fe/l in ‘dissolved’ forms, 90% or more of this Fe was in the nominal molecular weight fraction > 105. Experiments showed that DOM of nominal molecular weight <105 could stabilize Fe(III) in ‘dissolved’ forms. The concentrations of ‘dissolved’ Fe in the river water probably reflect the presence of colloidal Fe stabilized by organic material and this process may influence the apparent molecular weight of the DOM. Dissolved. Mn (100–136 βg/l) in the River Beaulieu was mainly in true solution, probably as Mn(II), with some 30% in forms of molecular weight greater than ca 104.During mi xing in the Beaulieu Estuary, DOC and dissolved Mn behave essentially conservatively. This contrasts with the removal of a large fraction of the dissolved Fe (Holliday and LISS, 1976, Est. Coastal Mar. Sci. 4, 349–353). Concentrations of lattice-held Fe and Mn in suspended particulate material were essentially uniform in the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice held fractions decreased markedly with increase in salinity. For Mn the decrease was linear and could be most simply accounted for by the physical mixing of riverborne and marine participates, although the possibility that some desorption occurs is not excluded. The non-linear decrease in the concentration of non-lattice held Fe in particulates reflected the more complex situation in which physical mixing is accompanied by removal of material from the ‘dissolved’ fraction.  相似文献   

18.
In recent decades, tangential-flow ultrafiltration (UF) technology has become a primary tool for isolating large amounts of “ultrafiltered” marine dissolved organic carbon (UDOC; 0.1 μm to ∼1 nm) for the detailed characterization of DOC chemical composition and radiocarbon (Δ14C) signatures. However, while total DOC Δ14C values are generally thought to be quite similar in the world ocean, previous studies have reported widely different Δ14C values for UDOC, even from very similar ocean regions, raising questions about the relative “reactivity” of high molecular weight (HMW) DOC. Specifically, to what degree do variations in DOM molecular weight (MW) vs. composition alter its relative persistence, and therefore HMW DOC Δ14C values?In this study we evaluate the effects of varying proportions of HMW vs. low molecular weight (LMW) DOC on UDOC Δ14C values. Using concentration factor (CF) as a proxy for MW distributions, we modeled the retention of both OC and Δ14C in several very large CF experiments (CF >3000), from three depths (20, 670, and 915 m) in the North Pacific Subtropical Gyre (NPSG). The resulting DOC and Δ14C UF permeation coefficients generally increase with depth, consistent with mass balance trends, indicating very significant permeation of LMW, 14C-depleted DOC at depth, and higher recoveries of Δ14C-enriched, HMW DOC in the surface. In addition, changes in CF during sample concentration and ionic strength during sample diafiltration had very large and predictable impacts on UDOC Δ14C values.Together these results suggest that previously reported disparities in UDOC Δ14C values are reconciled by linked trends of Δ14C content vs. MW. At low CFs, UDOC samples have similar Δ14C values to total DOC. In contrast, UDOC samples collected at extremely high CFs (and after diafiltration) have more positive Δ14C values. We demonstrate that the observed relationships between UDOC Δ14C and CF derived from our data can directly explain offsets in all previously published UDOC Δ14C values for the NPSG. While CF is not traditionally considered in UF studies, our results indicate it can substantially influence the interpretation of UDOC 14C “age”, and thus reactivity, in the marine environment. In addition, our results indicate that CF can in fact be used as a proxy for average MW. We suggest that a variable-CF-UF approach, coupled with molecular-level Δ14C analyses, presents a new tool for studying relationships between molecular size, age, and “labile” DOC distributions in the ocean.  相似文献   

19.
The lateral transport of bicarbonate as dissolved inorganic carbon (DIC) to the oceans is an integral component of the global carbon budget and can represent the sequestration of CO2 from the atmosphere. Recently studies have implicated land use change, in particular agricultural development, as an accelerator of bicarbonate export. However, due to the co-variation of land use, bedrock and surficial geologies, and the relationship between bicarbonate export and climate, the impact of anthropogenic activities on DIC export remains an important research question. In order to examine the land use controls on DIC export from small temperate watersheds we sampled 19 streams draining catchments of varying land uses with similar bedrock and surficial geologies. In addition to an agricultural effect, there was a strong correlation between the percent of watershed in urban development and DIC concentrations and DIC yields. Urban watersheds exported 7.8 times more DIC than their nearby forested counterparts and 2.0 times more DIC than nearby agricultural catchments. Isotopic data suggest that excess DIC export from altered systems results from increased chemical weathering, enhanced CO2 production within urban green spaces, and as a result of organic matter loading from septic systems and leaky sewer lines. Furthermore, we found that nitrogen additions (e.g. fertilizers and manure) are aiding in the dissolution of lime, increasing the total export of DIC from agricultural watersheds. Calculated anthropogenic loading rates ranged from 0.43 to 0.86 mol C m− 2 yr− 1. These loading rates suggest that a significant portion of global DIC export might be attributable to human activities, although the impacts on CO2 sequestration are difficult to determine.  相似文献   

20.
Fluorescence characterization of dissolved organic matter (DOM) and measurements of Cr-reducible sulfide (CRS) are presented for 72 coastal marine and estuarine water samples obtained from the USA and Canada. Each sample is identified according to source: terrigenous, autochthonous, wastewater or mixed. Fluorescence data are resolved into contributions from humic, fulvic, tyrosine and tryptophan-like fluorophores. Humic and fulvic-like fluorophores correlate well with dissolved organic C (DOC) (r2 = 0.73 and 0.71, respectively) but tyrosine and tryptophan-like fluorophores show no correlation with DOC. Quality factors are identified by normalization of fluorescence contributions to DOC. Humic and fulvic components show no statistical differences between sources but the amino acid-like fluorescence quality factors show significant variations between source, with highest values for autochthonous sources (0.07 ± 0.01 arbitrary fluorescence units per mg of C) versus low values (0.015 ± 0.005) for terrigenous source waters. CRS concentrations are highly variable from 0.07 ± 0.01 to 7703 ± 98 nM and do no correlate with DOC except when terrigenous source waters (n = 13) are separated out from the total sample set (r2 = 0.55). There is an open question in the literature; does DOC source matter in terms of protective effects towards metal toxicity? Here is shown that DOC molecular-level quality does vary and that this variation is mostly in terms of the contributions of amino acids to total fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号