首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

2.
Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation.Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated.The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (?2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.  相似文献   

3.
We derive equations describing the evolution of the carbon and oxygen isotope composition of the bicarbonate in a calcite precipitating solution on the surface of a stalagmite using a classical Rayleigh approach. The combined effects of calcite precipitation, degassing of CO2 and the buffering effect of the water reservoir are taken into account. Whereas δ13C shows a progressive increase to a final constant value, δ18O shows an initial isotopic enrichment, which exponentially decays due to the buffering effect of the water reservoir. The calculated evolution is significantly different for both carbon and oxygen isotopes than derived in a recent paper [Dreybrodt W. (2008) Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta72, 4712-4724.].Furthermore, we discuss the isotopic evolution of the bicarbonate in the solution for long residence times on the stalagmite surface, i.e., for t. The equilibrium isotope ratio of the bicarbonate is then determined by isotopic exchange between the cave atmosphere and the bicarbonate in the solution and can be calculated by equilibrium isotope fractionation. For strongly ventilated caves exchange with the cave atmosphere will result in higher δ13C and δ18O values than those observed in a pure Rayleigh distillation scenario, for sparsely ventilated caves it will result in lower δ13C and δ18O values.  相似文献   

4.
A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (δ17O = 0.97 ± 0.09δ18O, with the O2 depleted in 17O and 18O). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.  相似文献   

5.
“Plateau” δ18O values of CO2 that evolved from the Fe(CO3)OH component during isothermal vacuum dehydrations (200-230 °C) of 18 natural goethites range from 8.2 to 28.1‰. In contrast, the measured δ18O values of the goethite structural oxygen range from −11.3 to 1.7‰. The results of this study indicate that the apparent oxygen isotope fractionation factor (18αapp) between plateau CO2 and initial goethite is systematically related to the rate of isothermal vacuum dehydration. The nonlinear correlation and the magnitudes of the 18αapp values are predicted by a relatively simple mass balance model with the following assumptions: (1) the rate of isothermal vacuum dehydration of goethite (for the interval from 0 to ∼60 to 80% loss of structural hydroxyl hydrogen) can be reasonably well represented by first-order kinetics and (2) isotopic exchange between evolving H2O vapor and solid occurs only in successive, local transition states. The generally good correspondence between the model predictions and the experimental data seems to validate these assumptions. Thus, the 18O/16O ratios of the evolved CO2 can act as probes into the transient processes operating at the molecular level during the solid-state goethite-to-hematite phase transition. For example, the activation energy for the rate constant associated with the transition state, oxygen isotopic exchange between solid and H2O vapor, is tentatively estimated as 28 ± 11 KJ/mol. Such knowledge may be of consequence in understanding the significance of 18O/16O ratios in hematites from some natural environments (e.g., Mars?).Kinetic data and δ18O values of CO2 are routinely obtained in the course of measurements of the abundance and δ13C values of the Fe(CO3)OH in goethite. The observed correlation between 18αapp and dehydration rates suggests that plateau δ18O values of evolved CO2 may provide complementary estimates of the δ18O values of total goethite structural oxygen (O, OH, CO2) with an overall precision of about ±1‰. However, because of isotopic exchange during the dehydration process, δ18O values of the evolved CO2 do not reflect the original δ18O values of the CO2 that was occluded as Fe(CO3)OH in goethite.  相似文献   

6.
Carbon and hydrogen isotopic compositions of New Zealand geothermal gases   总被引:1,自引:0,他引:1  
Carbon and hydrogen isotopic compositions are reported for methane, hydrogen and carbon dioxide from four New Zealand geothermal areas: Ngawha, Wairakei, Broadlands and Tikitere. Carbon-13 contents are between ?24.4 and ?29.5%. (PDB) for methane, and between ?3.2 and ?9.1%. for carbon dioxide. Deuterium contents are between ?142 and ?197%. (SMOW) for methane and between ?310 and ?600%. for hydrogen. The different areas have different isotopic compositions with some general relationships to reservoir temperature.The isotopic exchange of hydrogen with water indicates acceptable reservoir temperatures of 180–260°C from most spring samples but often higher than measured temperatures in well samples. Indicated temperatures assuming 13C equilibria between CH4 and CO2 are 100–200°C higher than measured maxima. This difference may be due to partial isotopic equilibration or may reflect the origin of the methane. Present evidence cannot identify whether the methane is primordial, or from decomposing sediments or from reduction of magmatic CO2. The isotopic equilibria between CH4, CO2, H2 and H2O are reviewed and a new semi-empirical temperature scale proposed for deuterium exchange between methane and water.  相似文献   

7.
Carbon dioxide and nitrogenous gases in the soil atmosphere   总被引:1,自引:0,他引:1  
Carbon dioxide and nitrogenous trace gases (N2O, NO) in the soil atmosphere are mainly the products of microbially mediated processes. Once produced, these gases pass to the overlying atmosphere primarily via molecular diffusion, a process which is described by Fick's law of diffusion.In a diffusion-dominated soil, the partial pressure, or concentration, of CO2 in the soil atmosphere varies as a function of soil depth and is dependent on the production rate and diffusivities. Since these parameters are highly variable, CO2 concentrations vary widely both between, and within, differing ecosystems. In a compilation of data from around the world, arranged according to an ecosystem classification, soil CO2 concentrations varied from 0.04 to 13.0% by volume in the upper several meters of soil. These data also highlight the importance of organic substrate (soil organic matter, roots, root exudates), temperature, and (to some extent) moisture on CO2 production and the resulting concentration in soil profiles. The δ13C of the soil CO2 also varies as a function of depth due to differences in the δ13C of the organic substrate undergoing decomposition and the mixing with CO2 of the overlying atmosphere. Recent work suggests that the δ18O of the soil CO2 may hold some promise in estimating the δ18O of soil water.Biological production and consumption of N2O and NO results primarily from activity of nitrifying and denitrifying bacteria. Ammonium limitation of nitrification and organic carbon limitation of denitrification usually restricts these processes to surface soil horizons, although denitrification may be an important process for reducing NO3 in groundwater. These microbial processes and the relative proportions of their gaseous end products are strongly influenced by redox conditions. Microsite variation in sources of electron donors and acceptors is critical to understanding rates and distributions of N trace gas production. Several abiological oxidation and reduction reactions are also important, and interaction of biological and abiological processes deserves more research attention.  相似文献   

8.
Measurements of 18O in atmospheric CO2 have been used to partition site-level measured net ecosystem CO2 fluxes into gross fluxes and as a constraint on land surface biophysical processes at regional and global scales. However, these approaches require prediction of the δ18O value of the net CO2 flux between the soil and atmosphere (δF), a quantity that is difficult to measure and accurately predict. δF depends on the depth-dependent δ18O value of soil water (δsw), soil moisture and temperature, soil CO2 production, and the δ18O value of above-surface CO2. I applied numerical model manipulations, regression analysis, a simple estimation method, and an analysis of the characteristic times of relevant processes to study the impacts of these parameters on δF. The results indicate that ignoring δsw gradients in the near-surface soil can lead to large errors. In particular, in systems where δsw gradients exist, generalizing previous experimental observations to infer that a bulk (e.g., 5-10 cm or 5-15 cm depth) estimate of δsw can be used to estimate δF is problematic. These results highlight the need for further experiments and argue for the importance of accurately resolving near-surface δsw in the context of partitioning ecosystem CO2 fluxes and CO2 source attribution.  相似文献   

9.
Cellulose and silica phytoliths were extracted from the leaves and stems of Calamovilfa longifolia, a C4 grass, grown under varying climatic conditions across the North American prairies. The oxygen-isotope compositions of both cellulose and silica record a complex signal of the isotopic composition of the soil water that feeds the plants and the relative humidity conditions that influence transpiration rates, stomatal conductance, and ultimately the 18O-enrichment of leaf water. As the initial stages of cellulose formation occur in the leaves, cellulose in both the leaves and stems forms primarily from leaf water and does not differ greatly in its oxygen-isotope composition between these locations. In contrast, the δ18O values of leaf phytoliths are significantly enriched in 18O relative to stem phytoliths, reflecting the varying isotopic composition of the water in these tissues. The oxygen-isotope compositions of leaf cellulose may be used as a proxy for the isotopic composition of water involved in leaf phytolith formation, while the δ18O values of stem phytoliths can be used to determine the δ18O values of stem water involved in partial exchange reactions during the transport of carbohydrates through the plant. A comparison of the isotopic compositions of phytoliths with cellulose allows for the deduction of soil and leaf water δ18O values as well as temperature and relative humidity conditions during plant growth. This approach has application in paleoclimate studies that traditionally have required estimations of one or more of these variables because direct measurements were unavailable.  相似文献   

10.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

11.
The chemistry and budgets of atmospheric gases are constrained by their bulk stable isotope compositions (e.g., δ13C values), which are based on mixing ratios of isotopologues containing one rare isotope (e.g., 16O13C16O). Atmospheric gases also have isotopologues containing two or more rare isotopes (e.g., 18O13C16O). These species have unique physical and chemical properties and could help constrain origins of atmospheric gases and expand the scope of stable isotope geochemistry generally. We present the first measurements of the abundance of 18O13C16O from natural and synthetic sources, discuss the factors influencing its natural distribution and, as an example of its applied use, demonstrate how its abundance constrains the sources of CO2 in the Los Angeles basin. The concentration of 18O13C16O in air can be explained as a combination of ca. 1 enrichment (relative to the abundance expected if C and O isotopes are randomly distributed among all possible isotopologues) due to enhanced thermodynamic stability of this isotopologue during isotopic exchange with leaf and surface waters, ca. 0.1 depletion due to diffusion through leaf stomata, and subtle (ca. 0.05) dilution by 18O13C16O-poor anthropogenic CO2. Some air samples are slightly (ca. 0.05) lower in 18O13C16O than can be explained by these factors alone. Our results suggest that 18O13C16O abundances should vary by up to ca. 0.2 with latitude and season, and might have measurable sensitivities to stomatal conductances of land plants. We suggest the greatest use of Δ47 measurements will be to “leverage” interpretation of the δ18O of atmospheric CO2.  相似文献   

12.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

13.
Information regarding climatic conditions during plant growth is preserved by the oxygen-isotope composition of biogenic silica (phytoliths) deposited in grasses. The O-isotope compositions of phytoliths and the plant water from which they precipitate are dependent on soil-water δ18O values, relative humidity, evapotranspiration rates, and temperature. Plant water and phytoliths from two grass species, Ammophila breviligulata (C3) and Calamovilfa longifolia (C4) at Pinery Provincial Park in southwestern Ontario, Canada, were examined to determine the variability in their δ18O values. Stem water was unfractionated from soil-water in oxygen isotopic composition and the δ18O values of stem silica provide a good proxy for the soil water available to roots during the growing season. Greater spatial and temporal variation in the δ18O values of water in the top 5 cm of the soil, and their enhanced sensitivity to evaporative 18O enrichment, are reflected in the generally higher δ18O values of water in the shallow roots and rhizomes of these grasses. Water within the sheath and lower and upper leaf tissues experiences continual evaporation, becoming progressively enriched in 18O as it moves towards the tip of the leaf. However, the water from which leaf silica precipitates has not acquired the extreme 18O enrichment predicted using steady-state models, or measured for midday or average daily leaf water. Possible explanations for this behaviour include preferential deposition of silica at night; the existence of a secluded water fraction within the leaf, which experiences smaller diurnal variations in isotopic composition than leaf water at sites of evaporation; kinetic isotope effects during rapid precipitation of leaf silica; and incomplete exchange between the oxygen in the silicic acid and the leaf water.  相似文献   

14.
δ18O was determined at high spatial resolution (beam diameter ∼30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ18O variations that typically cover skeletal distances equivalent to periods of ∼20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ11B. We model predicted skeletal δ18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ∼80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO2. Seasonal skeletal δ18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ18O heterogeneity.  相似文献   

15.
Oxygen isotopic compositions of silicates in eclogites and whiteschists from the Kokchetav massif were analyzed by whole‐grain CO2‐laser fluorination methods. Systematic analyses yield extremely low δ18O for eclogites, as low as ?3.9‰ for garnet; these values are comparable with those reported for the Dabie‐Sulu UHP eclogites. Oxygen isotopic compositions are heterogeneous in samples of eclogite, even on an outcrop scale. Schists have rather uniform oxygen isotope values compared to eclogites, and low δ18O is not observed. Isotope thermometry indicates that both eclogites and schists achieved high‐temperature isotopic equilibration at 500–800 °C. This implies that retrograde metamorphic recrystallization barely modified the peak‐metamorphic oxygen isotopic signatures. A possible geological environment to account for the low‐δ18O basaltic protolith is a continental rift, most likely subjected to the conditions of a cold climate. After the basalt interacted with low δ18O meteoric water, it was tectonically inserted into the surrounding sedimentary units prior to, or during subduction and UHP metamorphism.  相似文献   

16.
An “on-line” mixing system has been developed and evaluated for continuous oxygen isotope exchange between gas-phase CO2 and liquid water. The system is composed of three basic parts: equipment and materials used to introduce water and gas into a mixing reservoir, the mixing and exchange reservoir, and a vessel used to separate gas and water phases exiting the system. A series of experiments were performed to monitor the isotope exchange process over a range of temperatures (5–40 °C) and CO2 partial pressures (202–15,200 Pa). Isotopic exchange was evaluated using CO2 having δ18O values of 30.4 and 37.8 ‰ and waters of two distinct oxygen isotope compositions (?6.5 to ?5 and 6 to 7.5 ‰). Isotope ratios were determined by isotope ratio mass spectrometry and cavity ring-down spectroscopy. CO2 did not reach oxygen isotope equilibrium under the conditions described here. However, oxygen isotope exchange rate constants were determined at different temperatures and regressed to yield the expression k (h?1) = 0.020 × T (°C) + 0.28. Using this expression, the residence time required to reach oxygen isotope equilibrium may be estimated for a given set of environmental conditions (e.g., δ18O value of water, temperature). System parameters can be modified to achieve a specific δ18O value for CO2. Consequently, the exchange system described here has the ability to deliver a constant flow of CO2 at a desired oxygen isotope composition. This ability is attractive for a variety of applications such as experiments that utilize flow-through reactors and environmental chambers or require static chemical conditions.  相似文献   

17.
Annually laminated carbonates, known as tufas, commonly develop in limestone areas and typically record seasonal patterns of oxygen- and carbon-isotope compositions. δ18O values are principally controlled by seasonal changes of water temperature, whereas δ13C values are the result of complex reactions among the gaseous, liquid, and solid sources of carbon in the system. We examined the processes that cause the seasonal patterns of δ13C in groundwater systems at three tufa-depositing sites in southwestern Japan by applying model calculations to geochemical data. Underground inorganic carbon species are exchanged with gaseous CO2, which is mainly introduced to the underground hydrological system by natural atmospheric ventilation and by diffusion of soil air. These processes control the seasonal pattern of δ13C, which is low in summer and high in winter. Among the three sites we investigated, we identified two extreme cases of the degree of carbon exchange between liquid and gaseous phases. For the case with high radiocarbon composition (Δ14C) and low pCO2, there was substantial carbon exchange because of a large contribution of atmospheric CO2 and a small water mass. For the other extreme case, which was characterized by low Δ14C and high pCO2, the contribution of atmospheric CO2 was small and the water mass was relatively large. Our results suggest that at two of the three sites water residence time within the soil profile was longer than 1 year. Our results also suggested a short residence time (less than 1 year) of water in the soil profile at the site with the smallest water mass, which is consistent with large seasonal amplitude of the springwater temperature variations. The Δ14C value of tufas is closely related to the hydrological conditions in which they are deposited. If the initial Δ14C value of a tufa-depositing system is stable, 14C-chronology can be used to date paleo-tufas.  相似文献   

18.
Isotopologues of molecular gases containing more than one rare isotope (multiply substituted isotopologues) can be analyzed with high precision (1σ <0.1), despite their low natural abundances (∼ ppm to ppt in air), and can constrain geochemical budgets of natural systems. We derive a method for calculating abundances of all such species in a thermodynamically equilibrated population of isotopologues, and present results of these calculations for O2, CO, N2, NO, CO2, and N2O between 1000 and 193 to 77 K. In most cases, multiply substituted isotopologues are predicted to be enriched relative to stochastic (random) distributions by ca. 1 to 2 at earth-surface temperatures. This deviation, defined as Δi for isotopologue i, generally increases linearly with 1/T at temperatures ≤ 500 K. An exception is N2O, which shows complex temperature dependences and 10’s of per-mill enrichments or depletions of abundances for some isotopologues. These calculations provide a basis for discriminating between fractionations controlled by equilibrium thermodynamics and other sorts of isotopic fractionations in the budgets of atmospheric gases. Moreover, because abundances of multiply substituted isotopologues in thermodynamically equilibrated populations of molecules vary systematically with temperature, they can be used as geothermometers. Such thermometers are unusual in that they involve homogeneous rather than heterogeneous equilibria (e.g., isotopic distribution in gaseous CO2 alone, rather than difference in isotopic composition between CO2 and coexisting water). Also, multiple independent thermometers exist for all molecules having more than one multiply substituted isotopologue (e.g., thermometers based on abundances of 18O13C16O and 18O12C18O are independent); thus, temperatures estimated by this method can be tested for internal consistency.  相似文献   

19.
A field, petrologic and stable isotopic investigation of the marbles and calc-silicates of the 1.15 b.y. Valley Spring Gneiss documents the dilution of internally evolved CO2-rich fluids by externally derived aqueous fluids introduced along channelways. Reaction textures within calcsilicates record the evolution through time of initially CO2-rich fluids toward increasingly more aqueous compositions. Assemblage zonations within calc-silicates require equilibration within local gradients of the mole fraction of CO2 in the fluid, and suggest that the infiltration of aqueous fluids was largely channelized along more permeable lithologies. Localized depletions in 13C and 18O corroborate petrologic evidence for channelized infiltration. Isotopic compositions reflect both devolatilization and the introduction of low- 18O fluids; estimated minimum oxygen-equivalent fluid-to-rock ratios are near unity. Both mineralogical and stable isotopic systematics document the essential role of infiltration in driving decarbonation reactions during calc-silicate formation. The calc-silicate assemblages which equilibrated with fluids of the lowest mole fraction of CO2 record isotopic exchange equilibrium with fluids of 18O typical of those derived from normal granites, as do the granitic aplites and pegmatites which transect most calcsilicate occurrences. Thus the infiltrating fluids are believed to be genetically linked to the intrusion of a suite of granitic plutons emplaced after the peak of regional metamorphism.  相似文献   

20.
The volcano-sedimentary sequence at the Raul mine, central Peru, consists of andesitic volcanics, graywackes, and siltstones, and has been metamorphosed to the upper greenschist-lower amphibolite facies at temperatures of 400–500°C. Isotopic data (O and H) have been collected from: (a) quartz and magnetite from stratiform ores, (b) amphiboles from amphibolite units that host stratiform ores, (c) calcite from late veins, (d) detrital quartz from graywackes, and (e) whole rocks.Interunit differences in quartz and magnetite δ18O values suggest that these minerals have resisted isotopic exchange during metamorphism, and that quartz-magnetite isotopic temperatures (380–414°C) represent primary formational temperatures. Calculated δ18O values of water in equilibrium with quartz and magnetite range from 9.1 to 12.6%..Amphibole δ18O and δD values show no interunit differences and suggest that the amphiboles have exchanged isotopes with a large metamorphic fluid reservoir. Calculated δ18OH2O and δDH2O values range from 8 to 12%. and ?3 to +42%., respectively.δ18OH2O values calculated from δ18O calcite and fluid inclusion filling temperatures range from 7.5 to 10%.. Water extracted from fluid inclusions in calcite has a δD value of ?20%..δ18O values of metamorphosed graywackes and volcanic sediments are not atypical, but andesitic lavas are 18O-rich (8–10%.) compared to normal andesites.Waters involved in ore deposition, metamorphism, and late vein formation at Raul are all thought to have a common source, principally seawater. The δ18OH2O and δDH2O values could be produced by evaporation of seawater, shale ultrafiltration, and isotopic exchange with host rocks during deep circulation through the volcano-sedimentary pile.A model is proposed whereby coastal ocean water is restricted from the open sea by volcanic island arcs, and subsequently undergoes evaporation. Circulation of this water is initiated by heat associated with seafloor volcanism. 18O-enrichment in andesites may be produced by isotopic exchange with high 18O waters at elevated temperatures and sufficiently high water/rock ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号