首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. The objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3 (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2−2 and UO2(CO3)3−4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3 and UO2(OH)4−2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.  相似文献   

2.
Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)32− and Ca2UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.  相似文献   

3.
Speciation of uranium (VI) in acetate solutions between 25 and 250°C, at pH values between 1.8 and 3.8 and acetate/uranium (Ac/U) ratios of 0.5 to 100 has been investigated using uranium LIII-edge X-ray absorption spectroscopy. With increasing pH the UO2(Ac)20 species becomes more important than UO2(Ac)+ species, which is predominant below pH 2. It remains the dominant species as pH is further increased to 3.8 at an Ac/U ratio of 20. Decrease in U-Oeq bond distance and coordination number with increasing solution age indicates that steric/kinetic factors are important and that equilibrium is attained slowly in this system with initial acetate coordination to the uranyl ion being monodentate or pseudo-bridging before slow conversion to bidentate chelation. Acetate coordination to the uranyl ion appears to decrease as temperature is increased from room temperature to ∼100°C before increasing in solutions of Ac/U > 2. For solutions where Ac/U ≤ 2 at pH 2.1, there is no evidence for uranyl acetate speciation at low temperatures, but at elevated temperature bidentate uranyl-acetate ion-pairing is evident. The existence of the uranyl acetate species in the temperature range 200 to 240°C demonstrates the importance of including acetate and other organic ligands in models of uranium transport at elevated temperatures.  相似文献   

4.
The adsorption of uranyl (UO22+) on ferrihydrite has been evaluated with the charge distribution (CD) model for systems covering a very large range of conditions, i.e. pH, ionic strength, CO2 pressure, U(VI) concentration, and loading. Modeling suggests that uranyl forms bidentate inner sphere complexes at sites that do not react chemically with carbonate ions. Uranyl is bound by singly-coordinated surface groups present at particular edges of Fe-octahedra of ferrihydrite while another set of singly-coordinated surface groups may form double-corner bidentate complexes with carbonate ions. The uranyl surface speciation strongly changes in the presence of carbonate due to the specific adsorption of carbonate ions as well as the formation of ternary uranyl-carbonate surface complexes. Data analysis with the CD model suggests that a uranyl tris-carbonato surface complex, i.e. (UO2)(CO3)34−, is formed. This species is most abundant in systems with a high pH and carbonate concentration. This finding differs significantly from previous interpretations made in the literature. At high pH and low carbonate concentrations, as can be prepared in CO2-closed systems, the model suggests the additional presence of a ternary uranyl-monocarbonato complex. The binding mode (type A or type B complex) is uncertain. At high uranyl concentrations, uranyl polymerizes at the surface of ferrihydrite giving, for instance, tris-uranyl surface complexes with and without carbonate. The similarities and differences between U(VI) adsorption by goethite and ferrihydrite are discussed from a surface structural point of view.  相似文献   

5.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   

6.
The concentrations of uranium, iron and the major constituents were determined in groundwater samples from aquifer containing uranyl phosphate minerals (meta-autunite, meta-torbernite and torbernite) in the Köprüba?? area. Groundwater samples from wells located at shallow depths (0.5–6 m) show usually near neutral pH values (6.2–7.1) and oxidizing conditions (Eh = 119–275 mV). Electrical conductivity (EC) values of samples are between 87 and 329 μS/cm?1. They are mostly characterized by mixed cationic Ca dominating bicarbonate types. The main hydrogeochemical process is weathering of the silicates in the shallow groundwater system. All groundwater in the study area are considered undersaturated with respect to torbernite and autunite. PHREEQC predicted UO2(HPO4) 2 2? as the unique species. The excellent positive correlation coefficient (r = 0.99) between U and PO4 indicates the dissolved uranium in groundwater would be associated with the dissolution of uranyl phosphate minerals. The groundwater show U content in the range 1.71–70.45 μg/l but they are mostly lower than US EPA (2003) maximum contaminant level of 30 μg/l. This low U concentrations in oxic groundwater samples is attributed to the low solubility of U(VI) phosphate minerals under near neutral pH and low bicarbonate conditions. Iron closely associated with studied sediments, were also detected in groundwater. The maximum concentration of Fe in groundwater samples was 2837 μg/l, while the drinking water guidelines of Turkish (TSE 1997) and US EPA (2003) were suggested 200 and 300 μg/l, respectively. Furthermore, iron and uranium showed a significant correlation to each other with a correlation coefficient (r) of 0.94. This high correlation is probably related to the iron-rich sediments which contain also significant amounts of uranium mineralization. In addition to pH and bicarbonate controlling dissolution of uranyl phosphates, association of uranyl phosphates with iron (hydr) oxides seems to play important role in the amount of dissolved U in shallow groundwater.  相似文献   

7.
Uranium co-precipitation with iron oxide minerals   总被引:2,自引:0,他引:2  
In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe2O3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria.To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (∼4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric υ3 stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O22+ species are extracted by the leach solutions. Uranium L3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Å and second shell Fe at a radial distance at 3.19 Å.Because of the large ionic radius of UO22+ (∼1.8 Å) relative to that of Fe3+ (0.65 Å), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(III)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O22+] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as γ-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Å, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)2·2H2O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure.  相似文献   

8.
X-ray absorption fine structure (XAFS) measurements was used at the U L3-edge to directly determine the pH dependence of the cell wall functional groups responsible for the absorption of aqueous UO22+ to Bacillus subtilis from pH 1.67 to 4.80. Surface complexation modeling can be used to predict metal distributions in water-rock systems, and it has been used to quantify bacterial adsorption of metal cations. However, successful application of these models requires a detailed knowledge not only of the type of bacterial surface site involved in metal adsorption/desorption, but also of the binding geometry. Previous acid-base titrations of B. subtilis cells suggested that three surface functional group types are important on the cell wall; these groups have been postulated to correspond to carboxyl, phosphoryl, and hydroxyl sites. When the U(VI) adsorption to B. subtilis is measured, observed is a significant pH-independent absorption at low pH values (<3.0), ascribed to an interaction between the uranyl cation and a neutrally charged phosphoryl group on the cell wall. The present study provides independent quantitative constraints on the types of sites involved in uranyl binding to B. subtilis from pH 1.67 to 4.80. The XAFS results indicate that at extremely low pH (pH 1.67) UO22+ binds exclusively to phosphoryl functional groups on the cell wall, with an average distance between the U atom and the P atom of 3.64 ± 0.01 Å. This U-P distance indicates an inner-sphere complex with an oxygen atom shared between the UO22+ and the phosphoryl ligand. The P signal at extremely low pH value is consistent with the UO22+ binding to a protonated phosphoryl group, as previously ascribed. With increasing pH (3.22 and 4.80), UO22+ binds increasingly to bacterial surface carboxyl functional groups, with an average distance between the U atom and the C atom of 2.89 ± 0.02 Å. This U-C distance indicates an inner-sphere complex with two oxygen atoms shared between the UO22+ and the carboxyl ligand. The results of this XAFS study confirm the uranyl-bacterial surface speciation model.  相似文献   

9.
One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO2, and for this reason the relative rates of sulfide and UO2 oxidation play a key role on whether or not UO2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe+2 activity in solution and increasing the potential for both sulfide and UO2 reoxidation. The greater (and unintuitive) UO2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO2 reoxidation through formation of uranyl carbonate aqueous complexes.  相似文献   

10.
Uranium and thorium isotopic composition of kasolite [Pb(UO2)SiO4-(H2O)] from Jabal Sayid area was determined by thermal ionization mass spectrometry. Secondary electron imaging, back-scattered electron imaging, and energy dispersive spectral scans were used to investigate the mineralogical characteristics of this uranyl mineral phase. Distinct crystal faces and crystal growth of kasolite from the study area confirm mineral precipitation near the surface from the circulating groundwater. The obtained data were used to interpret the mechanism of uranium mobility in Jabal Sayid weathering profile and to construct a tentative model to explain the isotopic evolution of uranium and thorium. This model indicates that (1) uranium was leached at depth, (2) uranyl mineralization was precipitated along fractures and cavities in the host rocks during humid conditions and pluvial periods, (3) preferential leaching of 234U from uranyl mineralization by recoil processes was continuous indicative of a weakly circulating groundwater, and (4) 234U-deficiency resulted in isotopic signatures characterized by low 234U/238U and high 230Th/234U ratios. The modification pattern of these activity ratios suggests that uranyl mineralization of Jabal Sayid, most probably, has been precipitated during the same Late Quaternary pluvial periods responsible for the formation of the corresponding mineralizations in the Eastern Desert of Egypt.  相似文献   

11.
The effect of Mg-, Ca-, and Sr–Uranyl-Carbonato complexes with respect to sorption on quartz was studied by means of batch experiments with U(VI) concentration of 0.126 × 10−6 M in the presence and absence of Mg, Ca, and Sr (each 1 mM) at pH from 6.5 to 9. In the absence of alkaline earth elements, 90% of the U(VI) sorbed on the quartz surface at all pH. In the presence of Mg, Ca, and Sr, the sorption of U(VI) on quartz decreased to 50, 10, and 30%, respectively. Sorption kinetics of U(VI) on quartz is faster in the absence of alkaline earth elements and reached equilibrium after 12 h, whereas in the presence of Mg, Ca and Sr, the kinetics of U(VI) sorption on quartz is pH dependent and attained equilibrium after 24 h. Aqueous speciation calculations for alkaline earth uranyl carbonates were carried out by using PHREEQC with the Nuclear Energy Agency thermodynamic database (NEA_2007) by adding constants for MUO2(CO3)32− and M2UO2(CO3)30 (M = Ca, Mg, Sr). This study reveals that alkaline earth elements can have a significant effect on the aqueous speciation of U(VI) under neutral to alkaline pH conditions and subsequently sorption behavior and mobility of U(VI) in aqueous environments.  相似文献   

12.
The South Alligator uranium deposits are located in the Northern Territory, Australia, south-west from the recent discoveries of Nabarlek, Ranger, Koongarra and Jabiluka. All five deposits occur in intensely folded Early Proterozoic rocks around the perimeter of the Kombolgie Formation, a flatlying Middle Proterozoic sandstone unit. It is proposed that during reconstitution (weathering or diagenesis) of acid volcanic rocks, groundwaters leached uranium and percolated down into the groundwater system of the permeable sandstone and conglomerate unit at the base of the sequence. Uranium as uranyl ion was stable in relatively high Eh groundwater conditions and was carried in solution until active reducing conditions were met with which resulted in reduction of uranyl ion to insoluble UO2. Reduction occurred where faulting had brought underlying carbonaceous shales up against the sandstone aquifer, or where groundwater could percolate down permeable fault zones into the carbonaceous shales. These structural, chemical traps were sites of uranium accumulation.  相似文献   

13.
The current study provides an investigation of abiotic reduction of an oversaturated uranyl solution driven by iron nanoparticle oxidation. The reactivity of nano-scale zero-valent iron (ZVI) under mildly oxic conditions (1.2% O2 and 0.0017% CO2) was studied in 1000 ppm uranyl solution in the pH range 3-7, at reaction times from 10 min to 4 h. Reductive precipitation of UO2 was observed as the main process responsible for the removal of uranium from solution with the kinetics of reaction becoming increasingly favourable at higher pH. Despite working with an oversaturated uranium solution, the precipitation of UO2 occurred in preference to precipitation of UO3·2H2O (metaschoepite) at reaction times between 1 and 4 h and for uranyl solutions initially set up at pH ?5. Characterisation of both solid and solution phases was performed using X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) imaging, X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).  相似文献   

14.
The fate and transport of uranium in contaminated soils and sediments may be affected by adsorption onto the surface of minerals such as montmorillonite. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the adsorption of uranyl (UO22+) onto Wyoming montmorillonite. At low pH (∼4) and low ionic strength (10−3 M), uranyl has an EXAFS spectrum indistinguishable from the aqueous uranyl cation, indicating binding via cation exchange. At near-neutral pH (∼7) and high ionic strength (1 M), the equatorial oxygen shell of uranyl is split, indicating inner-sphere binding to edge sites. Linear-combination fitting of the spectra of samples reacted under conditions where both types of binding are possible reveals that cation exchange at low ionic strengths on SWy-2 may be more important than predicted by past surface complexation models of U(VI) adsorption on related montmorillonites. Analysis of the binding site on the edges of montmorillonite suggests that U(VI) sorbs preferentially to [Fe(O,OH)6] octahedral sites over [Al(O,OH)6] sites. When bound to edge sites, U(VI) occurs as uranyl-carbonato ternary surface complexes in systems equilibrated with atmospheric CO2. Polymeric surface complexes were not observed under any of the conditions studied. Current surface complexation models of uranyl sorption on clay minerals may need to be reevaluated to account for the possible increased importance of cation exchange reactions at low ionic strengths, the presence of reactive octahedral iron surface sites, and the formation of uranyl-carbonato ternary surface complexes. Considering the adsorption mechanisms observed in this study, future studies of U(VI) transport in the environment should consider how uranium retardation will be affected by changes in key solution parameters, such as pH, ionic strength, exchangeable cation composition, and the presence or absence of CO2.  相似文献   

15.
We measured the kinetics of U(VI) reduction by Shewanella oneidensis MR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodynamic stabilities of the important U(VI)-bacterial surface complexes. In the EDTA experiments, the rate of U(IV) production increased with increasing EDTA concentration. However, the total dissolved U concentrations remained constant and identical to the initial U concentrations during the course of the experiments for all EDTA-bearing systems. Additionally, the U(VI) reduction rate in the EDTA experiments exhibited a strong correlation to the concentration of the aqueous U4+-EDTA complex. We conclude that the U(VI) reduction rate increases with increasing EDTA concentration, likely due to U4+-EDTA aqueous complexation which removes U(IV) from the cell surface and prevents UO2 precipitation.In the Ca experiments, the U(VI) reduction rate decreased as Ca concentration increased. Our thermodynamic modeling results based on the U(VI) adsorption data demonstrate that U(VI) was adsorbed onto the bacterial surface in the form of a Ca-uranyl-carbonate complex in addition to a number of other Ca-free uranyl complexes. The observed U(VI) reduction rates in the presence of Ca exhibit a strong negative correlation to the concentration of the Ca-uranyl-carbonate bacterial surface complex, but a strong positive correlation to the total concentration of all the other Ca-free uranyl surface complexes. Thus, the concentration of these Ca-free uranyl surface complexes appears to control the rate of U(VI) reduction by S. oneidensis in the presence of dissolved Ca. Our results demonstrate that U speciation, both of U(VI) before reduction and of U(IV) after reduction, affects the reduction kinetics, and that thermodynamic modeling of the U speciation may be useful in the prediction of reduction kinetics in realistic geologic settings.  相似文献   

16.
An alkaline brine containing uranyl (UO22+) leaked to the thick unsaturated zone at the Hanford Site. We examined samples from this zone at microscopic scale to determine the mode of uranium occurrence—microprecipitates of uranyl (UO22+) silicate within lithic-clast microfractures—and constructed a conceptual model for its emplacement, which we tested using a model of reactive diffusion at that scale. The study was driven by the need to understand the heterogeneous distribution of uranium and the chemical processes that controlled it. X-ray and electron microprobe imaging showed that the uranium was associated with a minority of clasts, specifically granitic clasts occupying less than four percent of the sediment volume. XANES analysis at micron resolution showed the uranium to be hexavalent. The uranium was precipitated in microfractures as radiating clusters of uranyl silicates, and sorbed uranium was not observed on other surfaces. Compositional determinations of the 1-3 μm precipitates were difficult, but indicated a uranyl silicate. These observations suggested that uranyl was removed from pore waters by diffusion and precipitation in microfractures, where dissolved silica within the granite-equilibrated solution would cause supersaturation with respect to sodium boltwoodite. This hypothesis was tested using a reactive diffusion model operating at microscale. Conditions favoring precipitation were simulated to be transient, and driven by the compositional contrast between pore and fracture space. Pore-space conditions, including alkaline pH, were eventually imposed on the microfracture environment. However, conditions favoring precipitation were prolonged within the microfracture by reaction at the silicate mineral surface to buffer pH in a solubility limiting acidic state, and to replenish dissolved silica. During this time, uranyl was additionally removed to the fracture space by diffusion from pore space. Uranyl is effectively immobilized within the microfracture environment within the presently unsaturated Vadose Zone.  相似文献   

17.
A quantitative evaluation of the solubility of uraninite (UO2) in aqueous solutions under hydrothermal conditions was made using previously reported thermodynamic data, so as to inquire into the controlling factors for Canadian unconformity-type ore mineralization as observed in the Athabasca uranium field. The results of solubility calculations suggest that uranyl carbonate complexes, such as UO2CO 3 o , UO2(CO3) 2 2- and UO2(CO3) 3 4- , predominate under relatively oxidizing and slightly acidic-alkaline conditions and that the uranyl chloride complex, UO2Cl+ is dominant under acidic conditions. These features are predicted at temperatures up to 200 °C over reasonable ranges of CO2 pressure (Pco2) and salinity. Consequently, the physico-chemical parameters, such as oxygen activity (ao2), and pH are regarded as the most important factors controlling uraninite solubility. Judging from the paragenetic sequences observed in most unconformity-type uranium deposits in the Athabasca district, appreciable decreases in the above variables are postulated to have occurred in the stage of principal uranium deposition. Such changes would be due to fluid-mixing phenomenon accompanied by the diagenetic-hydrothermal activity (Hoeve and Quirt 1987).  相似文献   

18.
The reduction of uranium(VI) by Shewanella oneidensis MR-1 was studied to examine the effects of bioreduction kinetics and background electrolyte on the physical properties and reactivity to re-oxidation of the biogenic uraninite, UO2(s). Bioreduction experiments were conducted with uranyl acetate as the electron acceptor and sodium lactate as the electron donor under resting cell conditions in a 30 mM NaHCO3 buffer, and in a PIPES-buffered artificial groundwater (PBAGW). MR-1 was cultured in batch mode in a defined minimal medium with a specified air-to-medium volume ratio such that electron acceptor (O2) limiting conditions were reached just when cells were harvested for subsequent experiments. The rate of U(VI) bioreduction was manipulated by varying the cell density and the incubation temperature (1.0 × 108 cell ml−1 at 20 °C or 2.0 × 108 cell ml−1 at 37 °C) to generate U(IV) solids at “fast” and “slow” rates in the two different buffers. The presence of Ca in PBAGW buffer altered U(VI) speciation and solubility, and significantly decreased U(VI) bioreduction kinetics. High resolution transmission electron microscopy was used to measure uraninite particle size distributions produced under the four different conditions. The most common primary particle size was 2.9-3.0 nm regardless of U(VI) bioreduction rate or background electrolyte. Extended X-ray absorption fine-structure spectroscopy was also used to estimate uraninite particle size and was consistent with TEM results. The reactivity of the biogenic uraninite products with dissolved oxygen was tested, and neither U(VI) bioreduction rate nor background electrolyte had any statistical effect on oxidation rates. With MR-1, uraninite particle size was not controlled by the bioreduction rate of U(VI) or the background electrolyte. These results for MR-1, where U(VI) bioreduction rate had no discernible effect on uraninite particle size or oxidation rate, contrast with our recent research with Shewanella putrefaciens CN32, where U(VI) bioreduction rate strongly influenced both uraninite particle size and oxidation rate. These two studies with Shewanella species can be viewed as consistent if one assumes that particle size controls oxidation rates, so the similar uraninite particle sizes produced by MR-1 regardless of U(VI) bioreduction rate would result in similar oxidation rates. Factors that might explain why U(VI) bioreduction rate was an important control on uraninite particle size for CN32 but not for MR-1 are discussed.  相似文献   

19.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   

20.
Uranyl adsorption was measured from aqueous electrolyte solutions onto well-characterized goethite, amorphous ferric oxyhydroxide, and hematite sols at 25°C. Adsorption was studied at a total uranyl concentration of 10?5 M, (dissolved uranyl 10?5 to 10?8 M) as a function of solution pH, ionic strength and electrolyte concentrations, and of competing cations and carbonate complexing. Solution pHs ranged from 3 to 10 in 0.1 M NaNO3 solutions containing up to 0.01 M NaHCO3. All the iron oxide materials strongly adsorbed dissolved uranyl species at pHs above 5 to 6 with adsorption greatest onto amorphous ferric oxyhydroxide and least onto well crystallized specular hematite. The presence of Ca or Mg at the 10?3 M level did not significantly affect uranyl adsorption. However, uranyl carbonate and hydroxy-carbonate complexing severely inhibited adsorption. The uranyl adsorption data measured in carbonate-free solutions was accurately modeled with the surface complexation-site binding model of Davis et al. (1978), assuming adsorption was chiefly of the UO2OH+ and (UO2)3(OH)+5, aqueous complexes. In modeling it was assumed that these complexes formed a monodentate UO2OH+ surface complex, and a monodentate, bidentate or tridentate (UO2)3(OH)+5surface complex. Of the latter, the bidentate surface complex is the most likely, based on crystallographic arguments. Modeling was less successful predicting uranyl adsorption in the presence of significant uranyl carbonate and hydroxy-carbonate complexing. It was necessary to slightly vary the intrinsic constants for adsorption of the di- and tricarbonate complexes in order to fit the uranyl adsorption data at total carbonate concentrations of 10?2 and 10?3 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号