首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although back conduction from the corona has been shown to be inadequate for powering EUV emission below T 2 × 105 K, it is thought to be adequate in the temperature range 2 × 105 K < T < 106 K. No models to date, however, have included the large magnetic constriction which should occur in the legs of coronal loops where conductive transition regions, hitherto thought to contain the bulk of the plasma in this higher temperature range, are located. On the basis of fine scale magnetograms, Dowdy et al. (1986) have estimated that these magnetic flux tubes are constricted from end to end by an areal factor of approximately 100. Furthermore, on the basis of simple steady-state conductive models, Dowdy et al. (1985) have shown that the large constriction can inhibit the conductive flow of heat by an order of magnitude. We are thus led to re-examine static models of this region of the atmosphere which incorporate not only conduction and radiation but also the effects of large magnetic constrictions. We find that the structure of this plasma depends not only on the magnitude of the constriction but also on the tube's shape.Our results show that no model with a constriction of order 100 can simultaneously (a) produce the variation of differential emission measure with temperature derived from measured line intensities and (b) satisfy the observed constraint (Reeves, 1976) that EUV emission from below T 7 × 105 K be confined to the supergranular network, covering no more than 0.45 of the solar surface. The failure of the models suggests that the bulk of the 105–106 K plasma in the quiet solar atmosphere is not in transition region structures, but is instead magnetically isolated from the corona and heated internally. Even though the transition region component of 105–106 K plasma in the legs of coronal loops should exist, it comprises only a small fraction of the total 105–106 K plasma and, hence, produces only a small fraction of the observed EUV emission from this temperature range.We also find that for any permitted tube shape, constriction factors of order 100 reduce the coronal conductive energy losses to the transition region to a value which is less than a third of the value for an unconstricted field, i.e., to less than 2 × 105 erg cm –2 s –1. In particular, if the magnetic geometry of the upper transition region is extremely concave (i.e., horn-shaped geometry with most of the areal divergence near the hot end), then a constriction of order 100 results in a conductive loss of less than 1 × 104 erg cm–2 s–1 and, hence, much less than the coronal radiative energy loss. For such geometries, the constriction in the magnetic field hence provides an effective thermal insulation of the corona from the cooler parts of the solar atmosphere.Presidential Young Investigator.  相似文献   

2.
A novel methodology for evaluating the field of anisotropically scattered radiation within a homogeneous slab atmosphere of arbitrary optical thickness is provided. It departs from the traditional radiative transfer approach in first considering that the atmosphere is illuminated by an isotropic light source. From the solution of this problem, it subsequently proceeds to that for the more conventional case of monodirectional illumination. The azimuthal dependence of the field is separated in the usual manner by an harmonic expansion, leaving a problem in four dimensions (=optical depth, 0=thickness, , =directions of incidence and scattering) which, as is well known, is numerically extremely inconvenient. Two auxiliary radiative transfer formulations of increasing dimensionality are considered: (i) a transfer equation for the newly introduced functionb m(,,0) with Sobolev's function m(,0) playing the role of a source-function. Because the incident direction does not intervene, m is simply expressed as a single integral term involvingb m. For bottom illumination, an analogous equation holds for the other new functionh m(,,0). However, simple reciprocity relations link the two functions so that it is only necessary to considerb m; (ii) a transfer equation for the other new functiona m(,,,0) with a source-function provided by Sobolev's functionD m(,,0). For bottom illumination, another functionf m(,,,0) is introduced; by a similar argument using reciprocity relations,f m is reduced toa m rendering necessary only the consideration ofa m. However, a fundamental decomposition formula is obtained which shows thata m is expressible algebraically in terms of functions of a single angular variable. The functions m andD m are shown to be the values in the horizontal plane ofb m anda m, respectively. The other auxiliary functionsX m andY m are also expressed algebraically in terms ofb m. These results enable one to proceed to the final step of evaluating the radiation field for monodirectional illumination. The above reductions toalgebraic relations involving only the functionb m appear to be more advantageous than Sobolev's (1972) recent approach; they also circumvent some basic numerical difficulties in it. We believe the present approach may likewise prove to be superior to most (if not all) other methods of solution known heretofore.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory under Contract No. NAS-7-100 sponsored by the National Aeronautics and Space Administration.  相似文献   

3.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

4.
A model of a first generation intermediate star of 5M , with Z=0 has been considered. The model is at an advanced stage of its evolution and has a double shell burning. It burns helium in the inner shell, and hydrogen, via CNO cycle, in the outer shell. =(log/log) T and T =(log/logT) were computed allowing for the oscillations of the relative mass abundance of the reagents in nuclear reactions. Including =(log/log) T and =(log/logT) of mean molecular weight and the effect of the oscillations of abundances due to nuclear reactions, stability was studied. Contrary to the results of the static calculations, we found that instability due to the excitation mechanism provided by the high temperature sensitivity of energy generation rate propagates up to the surface. Thus the model in question was found to be unstable against radial adiabatic pulsations, in its fundamental mode.  相似文献   

5.
A coronal bright point is resolved into a pattern of emission which, at any given time, consists of 2 or 3 miniature loops (each 2500 km in diameter and 12 000 km long). During the half-day lifetime of the bright point individual loops evolved on a time scale 6 min. A small ctive region seemed to evolve in this way, but the occasional blurring together of several loops made it difficult to follow individual changes.  相似文献   

6.
The influence of the solar wind on large-scale temperature and density distributions in the lower corona is studied. This influence is most profoundly felt through its effect upon the geometry of coronal magnetic fields since the presence of expansion divides the corona into magnetically open and closed regions. Each of these regions is governed by entirely different energy transport processes. This results in significant temperature differences since only the open field regions suffer outward conductive heat losses. Because the temperature influences the density in an exponential manner, large density inhomogeneities are to be expected.An approximate method for calculating the temperature and density distribution in a known magnetic field geometry is outlined and numerical estimates are carried out for representative coronal conditions. These estimates show that temperature differences of a factor of about two and density differences of ten can be expected in the lower corona even for uniform base conditions. As a result, we do not regard the so-called coronal holes necessairly as locations of reduced mechanical heating. Alternatively, we suggest that they are regions of open magnetic field lines being continuously drained of energy contert by the solar wind expansion and outward thermal conduction.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Intermediate resolution (/ 25 000) CCD spectra of the oxygen triplet at 7770 Å have been analyzed to determine oxygen abundances in a sample of metal-deficient stars with metallicities covering the range –2.5[Fe/H]–0.2. Important oxygen overabundances ([O/Fe]1) are found in the more metal deficient stars of the sample. We briefly discuss the information that these observations provide about the early nucleosynthesis history and chemical evolution of the Galaxy.  相似文献   

8.
An exact solution of Einstein's equation is stated in which the density (), pressure (p), scale factorS and metric coefficients are functions of only one dimensionless self-similar variable,ct/R, wheret is cosmic time andR is a co-moving radial coordinate. The solution represents a cosmology that begins as a static sphere having R –2 and evolves into an expanding model which is pressure-free and has a hierarchical type of density law ( R , approximately, with =a number, 02). It is suggested that this model should supersede the previous models of Wesson and other workers, since it appears to be the simplest cosmology for a hierarchy.  相似文献   

9.
Fine dark H filaments fibrils form at the limb, apparently in most of the middle chromosphere corresponding to an altitude between 1500–2000 km and 4000 km. The space in between filaments is corona and the transition layer. The cool gas in fibrils is protected by the magnetic field against the conductive flux out of the hot corona. Therefore the fibrils stretch up to 4000 km where their temperature is about 18 000 K and the density about 5 × 109 cm–3. The gas in the fibrils is ionized by electronic collisions and by the external ultraviolet radiation. The second level of the hydrogen atoms in fibrils is populated by recombinations, electronic collisions and by Ly- quanta. The calculated optical thickness of the fibrils in H is about 1, it explains the absorption features on the spectroheliograms. The gas pressure in fibrils is lower than the coronal pressure, and the pressure equilibrium is achieved by a magnetic field of about 1.5–2 G. In the active regions the photospheric fields are stronger, therefore the fibrils in active regions are wider and show more contrast. The emission of the fibrils at the limb is explained by the scattering of the solar radiation. The temperature in arches reaching as high as 5000–6000 km, is stabilized near the top by the HeII emission. Thus the middle chromosphere is essentially a collection of magnetic arches.  相似文献   

10.
11.
As a result of a collaborative rocket experiment carried out during the solar eclipse on 7 March, 1970, measurements have been made of the brightness of Lyman from the corona, at heights between 5 × 104 and 5 × 105 km above the limb. The emission is shown to occur primarily through the resonance scattering of chromospheric Lyman from the residual neutral hydrogen in the corona. Both the absolute value and radial fall-off of the brightness agree well with calculations based on solar density models. The Lyman emission has similar variations around the limb to the white light corona, showing in particular an equatorial enhancement.  相似文献   

12.
13.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

14.
P. Mein  N. Mein 《Solar physics》1991,136(2):317-333
A quiescent prominence has been observed with the MSDP spectrograph at the Pic du Midi Observatory. H profiles are obtained simultaneously in a 2D field, allowing a statistical analysis. The standard deviations of Doppler shifts and line widths are investigated as functions of the line intensity. The observations are compared with numerical simulations assuming that the prominence is made of identical threads, the velocity of which is distributed according to gaussian functions. The processing of simulations is very close to the processing of observations. The mixing by seeing effects and the transfer of radiation across several threads along the line of sight are considered. The results are consistent with the values derived by Engvold et al. (1989) and Zirker and Koutchmy (1989, 1990, 1991).The best fits are obtained with the following conditions. The temperature is 8500 K. In the middle range of intensities, each pixel results typically from the mixing of 6 velocity threads, the optical thickness of which is roughly 0.2 at H center, and the geometrical thickness larger than 1000 km. It is likely that the velocity threads have larger sizes than the density threads. The fit of the results is improved by taking into account a slight scatter of source functions throughout the prominence.In the central parts of the prominence, the fit is obtained by assuming that the line-of-sight velocities of the threads have a gaussian probability function (standard deviation 7 km s–1).In the edges, we suggest larger scatter of velocities, and two combined dispersions. The velocity threads observed along a given line of sight are supposed to have neighbouring velocities (dispersion 7 km s–1) around a mean value taken at random inside another distribution function (dispersion 7 km s–1).  相似文献   

15.
16.
17.
Ayres  Thomas R. 《Solar physics》2000,193(1-2):273-297
The solar–stellar connection bridges the daytime and nighttime communities; an essential link between the singular, but detailed, views of our Sun, and the broad, but coarse, glimpses of the distant stars. One area in particular – magnetic activity – has profited greatly from the two way traffic in ideas. In that spirit, I present an evolutionary context for coronal activity, focusing on the very different circumstances of low-mass main-sequence stars like the Sun, compared with more massive stars. The former are active mainly very early in their lives, whereas the latter become coronal only near the end of theirs, during the brief incursion into the cool half of the Hertzsprung–Russell diagram as yellow, then red, giants. I describe tools at the disposal of the stellar astronomer; especially spectroscopy in the ultraviolet and X-ray bands where coronae leave their most obvious imprints. I compare HST STIS spectra of solar-type dwarfs – Dor (F7 V), an active coronal source, and Cen A (G2 V), near twin of the Sun – to the SOHO SUMER UV solar atlas. I also compare the STIS line profiles of the active coronal dwarf to the corresponding features in the mixed activity hybrid chromosphere bright giant TrA (K2 II) and the archetype non-coronal red giant Arcturus ( Boo; K2 III). The latter shows dramatic evidence for a cool absorber in its outer atmosphere that is extinguishing the hot lines (like Siiv 1393 and Nv 1238) below about 1500 Å; the corona of the red giant seems to lie beneath its extended chromosphere, rather than outside as in the Sun. I present an early taste of the moderate resolution spectra we can expect from the recently launched Chandra X-ray Observatory (CXO), and contemporaneous STIS high resolution UV measurements of the CXO calibration star Capella ( Aur; G8 III + G1 III). Last, I describe preliminary results from a May 1999 observing campaign involving SOHO SUMER, TRACE, and the Kitt Peak Infrared Imaging Spectrometer (IRIS). The purpose was to explore the dynamics of the quiet solar atmosphere through the key magnetic transition zone that separates the kinetically dominated deep photosphere from the magnetically dominated coronal regime. Linking spatially and temporally resolved solar phenomena to properties of the average line shapes (widths, asymmetries, intensity ratios, and Doppler shifts) is a crucial step in carrying physical insights from the solar setting to the realm of the distant stars.  相似文献   

18.
General theory of electrical conductivity of a multicomponent mixture of degenerate fermions in a magnetic fieldB, developed in the preceding article (this volume), is applied to a matter in neutron star interiors at densities 0, where 0 = 2.8×1014 g cm–3 is the standard nuclear matter density. A model of free-particle mixture ofn, p, e is used, with account for appearance of -hyperons at > c , where c 40. The electric resistivities along and acrossB, and , and the Hall resistivity H are calculated and fitted by simple analytical formulae at c and > c for the cases of normal or superfluid neutrons provided other particles are normal. Charge transport alongB is produced by electrons, due to their Coulombic collisions with other charged particles; is independent ofB and almost independent of the neutron superfluidity. Charge transport acrossB at largeB may be essentially determined by other charged particles. If c , one has = [1 + (B/B 0)2] for the normal neutrons, and for the superfluid neutrons, while H = B/B e for both cases. HereB e 109 T 8 2 G,B 01011 T 8 2 G, andT 8 is temperature in units of 108 K. Accordingly for the normal neutrons atBB 0, the transverse resistivity suffers an enhancement, 1/4 1. When 50 andB varies from 0 toBB p 1013 T 8 2 G, increases by a factor of about 103–104 and H changes sign. WhenBB p , remains constant for the superfluid neutrons, and H B 2 for the normal neutrons, while H B for any neutron state. Strong dependence of resistivity onB, T, and may affect evolution of magnetic fields in neutron star cores. In particular, the enhancement of at highB may noticeably speed up the Ohmic decay of those electric currents which are perpendicular toB.  相似文献   

19.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

20.
Vibrational transition probabilities, namely Franck—Condon factors and -centroids have been evaluated by an approximate analytical method for the (A–X), (A–X), and (A–X) system of YO molecule. Morse potential energy curves forX 2+,A 22,A22, andA22, states of YO have been constructed using the latest spectroscopic data. The value of -centroids for the band have been found to decrease linearly with the corresponding wavelengths. We show results for two new transitions of (A–X) and (A–X) and five new bands of (A–X) of YO in the umbral spectrum of the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号