首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The purpose of this paper is to present a general model for the acceleration exerted on a spacecraft by the radiation coming from a planet. Both the solar radiation reflected by the planet and the thermal emission associated with its temperature are considered. The planet albedo and the planet emissive power are expanded in spherical harmonics with respect to an equatorial reference frame attached to the planet. The satellite external surface is assumed to consist of a juxtaposition of planar surfaces. A particular choice of variables allows to reduce the surface integrals over the lit portion of the planet visible to the satellite to one-dimension integrals.  相似文献   

2.
In this work, we shall confine ourselves to solve analytically the integrals called , for the two components of albedo radiation pressure on an Earth’s satellite. When the Earth’s albedo is variable, as far as we know, this case has not been dealt with analytically. We shall solve these two integrals when the satellite’ horizon is illuminated and when the sun lies on the equator. This approach will facilitate the evaluation of the mentioned two equations. We will also compare our results with previous works obtained numerically.  相似文献   

3.
A geometric method for calculating the relative masses of the Galilean satellites of Jupiter is proposed. Local characteristics coincident with the Hausdorff—Bezikovich dimension have been calculated for each planet—satellite pair. The relative masses calculated by the geometric method differ from those obtained by analyzing the motion of spacecraft by no more than 0.1%.  相似文献   

4.
The purpose of this work is to show that chaos control techniques (OGY, in special) can be used to efficiently keep a spacecraft around another body performing elaborate orbits. We consider a satellite and a spacecraft moving initially in coplanar and circular orbits, with slightly different radii, around a heavy central planet. The spacecraft, which is the inner body, has a slightly larger angular velocity than the satellite so that, after some time, they eventually go to a situation in which the distance between them becomes sufficiently small, so that they start to interact with one another. This situation is called as an encounter. In previous work we have shown that this scenario is a typical situation of a chaotic scattering for some well-defined range of parameters. Considering this scenario, we first show how it is possible to find the unstable periodic orbits that are located in the chaotic invariant set. From the set of unstable periodic orbits, we select the ones that can be combined to provide the desired elaborate orbit. Then, chaos control technique based on the OGY method is used to keep the spacecraft in the desired orbit. Finally, we analyze the results and make considerations regarding a realistic scenario of space exploration.  相似文献   

5.
A two body, patched conic analysis is presented for a planetary capture mode in which a gravity assist by an existing natural satellite of the planet aids in the capture. An analytical condition sufficient for capture is developed and applied for the following planet/satellite systems: Earth/Moon, Jupiter/Ganymede, Jupiter/Callisto, Saturn/Titan and Neptune/Triton. Co-planar, circular planetary orbits are assumed. Three sources of bodies to be captured are considered: spacecraft launched from Earth, bodies entering the solar system from interstellar space, and bodies already in orbit around the Sun. Results show that the Neptune/Triton system has the most capability for satellite aided capture of those studied. It can easily capture bodies entering the Solar System from interstellar space. Its ability to capture spacecraft launched from Earth is marginal and can only be decided with better definition of physical properties. None of the other systems can capture bodies from these two sources, but all can capture bodies already in orbit around the Sun under appropriate conditions.  相似文献   

6.
Anthony Mallama   《Icarus》2007,192(2):576-581
A model for computing the brightness of a satellite in the shadow of a planet is described, which takes into account the Sun–planet–satellite–sensor geometry, the satellite bi-directional reflectance function, and the refraction of sunlight in the planetary atmosphere. Synthetic light curves for eclipse ingress or egress of the five large satellites of Uranus are generated. The model luminosities can be fitted to photometric observations in order to calculate a precise distance between the centers of the satellite and the planet. Alternately, when the satellite ephemeris is accurately known the atmospheric state of the planet can be studied.  相似文献   

7.
Some aspects of the perturbative influence of radiation reflected by the Earth's surface on the motion of an artificial satellite are discussed. We concentrate on consequences of the extreme models with anisotropic reflection on the Earth's surface (specular reflection, clouds with anisotropic phase function). The possible effects of Lála's modification of the Earth's albedo nominal value are investigated. The role of the satellite surface optical properties is pointed out in the context of the albedo effect. All mentioned models are purely numerical. The whole message of the paper can be summarized in the following items
  • -It is very doubtful that the 10?8 ÷ 10?9 m s?2 level is reached when determining the perturbing accelerations caused by the albedo effect in the case of the ERS-1 satellite due to poorly defined optical characteristics of the Earth's atmosphere, the Earth and the satellite's surface.
  • -In the general case this albedo effect uncertainty level is about 50% with respect to the averaged values, and probably as high as 100% with respect to the instantaneous values of the perturbing accelerations.
  •   相似文献   

    8.
    The force due to radiation pressure on a satellite of arbitrary shape is written in a general form within a formalism similar to that used in the theory of radiative transfer in atmospheres. Then the corresponding integrals are evaluated for the simple case of a spherically symmetric satellite, and applied to model the perturbation due to the Earth-reflected radiation flux on LAGEOS. For this purpose, the optical behaviour of the Earth's surface and atmosphere is described as a combination of Lambertian diffusion (continents), partial specular reflection consistent with Fresnel law (oceans) and anisotropic diffusion according to Chandrasekhar's radiative transfer theory (clouds). The in-plane Gauss componentsT andS vs. mean anomaly are computed for a simple orbital geometry and for different models of the Earth's optical properties. A sensitive dependence is found on the assumed cloud distribution, with significant perturbations possibly arising from oceanic specular reflection when the satellite is close to the Earth's shadow boundaries.On leave from Astronomical Institute, Charles University, védská 8, 15000 Prague 5, Czechoslovakia  相似文献   

    9.
    The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

    10.
    By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

    11.
    The concept of interconnected satellite systems for various scientific and engineering applications based on small spacecraft and a transport and power module with a nuclear power plant is discussed. The system is connected by laser radiation from the transport and power module that supplies power to small satellites, establishes high-speed data transmission, and is used to perform high-precision measurements of intersatellite distances. Several practical use cases for such a connected system are considered.  相似文献   

    12.
    Hydrogen atoms in Keplerian orbits about a planet are dynamically perturbed by solar Ly α radiation. These perturbations are examined here by analyzing the rates of change of the classical orbital elements, with rather different conclusions from those drawn by Bertaux and Blamont (1973) from numerical integration of sample orbits. There are three main effects: high inclination orbits with eccentricities e ? 0.4 are forced toward the ecliptic plane within a few weeks; the perigees of direct [or retrograde] orbits drift rapidly (i.e., in a few days) toward stable positions roughly westward [or eastward] of the planet; satellite orbits in or near such a stable point rapidly lower their perigees and the satellite's life is ended by a collision in the atmosphere. Thus there are effects tending to diminish the number of highly eccentric orbits with distant apogees in all six principal directions (N, S; Sun, anti-Sun; E, W). The various lifetimes are compared for a sample of initial elements.  相似文献   

    13.
    We show that, when a natural satellite like Titan is invisible (e.g., due to an opaque atmosphere) its planetary orbit and its mass can be determined by tracking a spacecraft in close flybys. This is an important problem in the Cassini mission to the Saturnian system, which will be greatly improved by a good astrometric model for all its main components; in particular, an accuracy of a few hundred meters for the orbit of Titan is necessary to allow a measurement of its moment of inertia. The orbit of the spacecraft is the union of elliptical arcs, joined by short hyperbolic transitions: a problem of singular perturbation theory, whose solution leads to a matching condition between the inner hyperbolic orbit and the elliptical orbital elements. Since the inner elements are given in terms of the relative position and velocity of the spacecraft, accurate Doppler measurements in both regions can provide a satisfactory determination of Titan's position and velocity, hence of its Keplerian elements. The errors in this determination are discussed on the basis of the expected Allan deviation of the Doppler method; it is found that the driving errors are those in the elliptical arcs; the fractional errors in Titan's orbital elements are expected to be 10–7. It is also possible to measure the mass of the satellite; however, when the eccentricity e of the flybys is large, the mass and a scaling transformation are highly correlated and the fractional error in the mass is expected to be e times worse.  相似文献   

    14.
    Equations of motion are established for a dynamical system in which a spacecraft flies close to and interacts with an outer planet and one or more of its satellites. For the computation of the state and mass partials needed in a simultaneous orbit correction ofn interacting bodies, a notably compact set of variational equations is derived. The above system of differential equations is integrated numerically on a computer.Spacecraft-satellite direction measurements accurate to ±10 were simulated along three representative trajectories (Mariner/Jupiter/Saturn 1977 missions) approaching Io, Titan, and Iapetus to within 41 000, 13 000, and 7 000 km, respectively. For example, from measurements distributed evenly at half-day intervals over a 60-day arc centered on encounter, but none so close that the satellite would fill more than 0.5° in the sky, the orbit of the satelliteand that of the spacraft can be estimated to about 100 km. In addition, the mass of the satellite is obtainable to 2.6% for Io, 1.4% for Titan, and 9% for Iapetus. If only measurements up to 3 days before satellite encounter are included, the orbit of the satelliteor that of the spacecraft can be estimated to about 300 km, all information on mass being lost.The paper concludes with a brief discussion of the need for future work on the orbits of the satellites of the outer planets.  相似文献   

    15.
    We consider a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun; we further assume that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet. The pair planet–satellite is encountered by a population of small bodies on planet-crossing, inclined orbits. With this setup, and using the extension of Öpik’s theory by Valsecchi et al. (Astron Astrophys 408:1179–1196, 2003), we analytically compute the velocity, the elongation from the apex and the impact point coordinates of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact. The relationships so derived are of interest for satellites in synchronous rotation, since they can shed light on the degree of apex–antapex cratering asymmetry that some of these satellites show. We test these relationships on two different subsets of the known population of Near Earth Asteroids.  相似文献   

    16.
    Ballistic capture of spacecraft and celestial bodies by planets of the solar system is studied considering the elliptic restricted three body model. A preferential region, due to the eccentricity of the planet and the Sun-gravity-gradient effect is found for the capture phenomenon. An analytical formula is derived which determines the limiting value of the satellite capture eccentricity ec as a function of the pericenter distance xp and planet’s true anomaly. The analytic values ec are tested by a numerical propagator, which makes use of planetary ephemeris, and only a small difference with respect to numerical integration is found. It turns out that lower values of ec occur when the planet anomaly is close to zero; that is, capture is easier when the planet is at its perihelion. This fact is confirmed by the capture of celestial bodies. It is shown that Jupiter comets are generally captured when Jupiter is in its perihelion region. Ballistic capture is also important in interplanetary missions. The propellant saved using the minimum ballistic capture eccentricity is evaluated for different missions and compared with respect to the case in which the insertion orbit is a parabola: a significant saving can be accomplished.  相似文献   

    17.
    We discuss some details of the cloud coverage aspects of the albedo effect — the pressure of the radiation reflected by the Earth — on the motion of an artificial satellite. We focus on modeling of the Earth's surface reflection and propagation of the radiation through the atmosphere. We adopt analytical models of these phenomena from radiative transfer theory, in contrast to earlier approaches, based on the fitting of satellite photometry data. We perform several computations based on the accepted models for the ERS-1 and MACEK satellites to test the hierarchy of importance of the effects investigated. In the case of the MACEK mission (which carried a precision accelerometer on board) this information might be essential when interpreting the data.  相似文献   

    18.
    The distribution of neutral and ionized particles about a planet depends, at any time, on angular coordinates (latitude and longitude) as well as altitude. Measurements of the Venusian and Martian atmospheres and ionospheres have been made by means of the ‘occultation’ experiment on-board the Mariner spacecrafts, and the same or similar experiment is planned for future missions to the planets. The conventional method of reducing the residual doppler data assumes spherical symmetry, in which the refractivity of the medium depends only on radius from the center of the planet, or altitude. It is shown that the neglect of angular dependence may introduce serious errors, even for media in which this dependence is slight compared to that in the radial direction, when the plane of motion of the spacecraft about the planet is inclined with respect to the direction of the Earth. The magnitude of the errors may be greatest for a planet such as Mercury and least for Jupiter, if planetary size and atmospheric temperature are the principal factors considered. Mars and Venus being intermediate. These results are most significant for an orbiter in which the orbital plane is inclined to obtain planetary coverage in a matter of months of measurements. Results of calculations for a particular model show that scale height measurements, and, thereby, atmospheric temperature, may be in error by a factor greater than 2 for inclined orbital configurations.  相似文献   

    19.
    The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.  相似文献   

    20.
    Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号