首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

2.
The Tractus Fossae region of Mars is a wide area dominated by grabens, normal faults and pit crater chains. In this work, based on previous studies on the area and the new interpretation of topographic data and morphological units based on images as a geologic framework we present a new insight on the origin of the graben structures as well as on the processes associated with the formation of the volcanic features. Here we propose a new model for this region, on the basis of new measurements of graben extension and geological interpretations, together with a reinterpretation of the stratigraphy and the geologic history of the area. Finally, it is postulated that this region underwent a tectonic regime analog to an asymmetric rift system on Earth.  相似文献   

3.
High-resolution images from the Cassini Imaging Science Subsystem (ISS) show parallel sets of grooves on Epimetheus and Pandora. Grooves have previously been observed on other satellites and asteroids, including Phobos, Gaspra, Ida, Eros, and minor occurrences on Phoebe. Sets of parallel grooves are so far observed only on satellites known or likely to be subject to significant tidal stresses, such as forced librations. Grooves on asteroids and on satellites not subject to significant forced librations occur in more globally disorganized patterns that may reflect impacts, varying internal structures, or even thermal stresses. The patterns and individual morphologies of grooves on the tidally-affected satellites suggest fracturing in weak materials due to tidal stresses and forced librations.  相似文献   

4.
Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ~1.6 times less melt volume than a vertical impact, and ~1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous–Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.  相似文献   

5.
从三方面概述了太阳活动不对称的进展;不对称性的特征及其演化行为、周期性和可能的解释。太阳活动的南北半球及东西半球人发布是不均匀的,且在南北半球上分布不对称;但目前仍无法确定东西半球分布不对称。在众多的解释太阳活动不对称的理论中,没有一种理论被广泛接受。对将来开展太阳活动不对称性研究工作提出了一些看法。  相似文献   

6.
Peter Thomas 《Icarus》1979,40(2):223-243
Viking Orbiter images have provided nearly complete coverage of the two satellites of Mars and have been used to construct maps of the surface features of Phobos and Deimos. The satellites have radically different appearances although nearly all features on both objects were formed directly or indirectly by impact cratering. Phobos has an extensive network of linear depressions (grooves) that probably were formed indirectly by the largest impact recorded on Phobos. Deimos lacks grooves as well as the large number of ridges that occur on Phobos. Craters on Deimos have substantial sediment fill; those on Phobos have none. Evidence of downslope movement of debris is prominent on Deimos but is rare on Phobos. Many of the differences between Phobos and Deimos may be caused by modest differences in mechanical properties. However, the lack of a very large crater on Deimos may be responsible for its lack of grooves.  相似文献   

7.
Spectroscopic and infrared observations of Comet Sugano-Saigusa-Fujikawa (1983V) were obtained during its close approach to the Earth on 11-14 June 1983. The [O I] production rates of 1.8 +/- 0.9 x 10(26) atoms/s observed on 12.3 June and 7 +/- 3.5 x 10(26) atoms/s on 13.4 June lead to derived water-production rates of 3 x 10(27) mol/s on 12 June and 1.1 x 10(28) mol/s on 13 June. The abundances of the minor species NH2, CN, C2, and C3 are unusually low relative to [O I]. The upper limit to the average nuclear radius from our infrared and visual photometry on 12-13 June (assuming that the entire signal came from the nucleus) is approximately 370 m. The dust/gas mass ratio was <0.01 on June 12 and <0.005 on June 13.  相似文献   

8.
The recently established Arkansas-Oklahoma Center for Space and Planetary Science has been given a large planetary simulation chamber by the Jet Propulsion Laboratory, Pasadena, California. When completely refurbished, the chamber will be dubbed Andromeda and it will enable conditions in space, on asteroids, on comet nuclei, and on Mars, to be reproduced on the meter-scale and surface and subsurface processes monitored using a range of analytical instruments. The following projects are currently planned for the facility. (1) Examination of the role of surface and subsurface processes on small bodies in the formation of meteorites. (2) Development of in situ sediment dating instrumentation for Mars. (3) Studies of the survivability of methanogenic microorganisms under conditions resembling the subsurface of Mars to test the feasibility of such species surviving on Mars and identify the characteristics of the species most likely to be present on Mars. (4) The nature of the biochemical “fingerprints” likely to have been left by live organisms on Mars from a study of degradation products of biologically related molecules. (5) Testing local resource utilization in spacecraft design. (6) Characterization of surface effects on reflectivity spectra for comparison with the data from spacecraft-borne instruments on Mars orbiters.  相似文献   

9.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   

10.
A weighted least squares fit to the best available data on the Martian microwave spectrum indicates that the brightness temperature decreases from long to short wavelengths, rather than increasing as expected from the solution of the one-dimensional equation of heat conduction. Reasonable assumptions on the ratio of electrical to thermal skin depths, on internal heat sources, on ferromagnetic materials, on radiative conduction, on compaction with depth, and on surface rpughness all fail in reproducing the deduced spectrum. A thin near-surface layer of a material with high dielectric constant and high millimeter wave absorption is needed. Since Mars exhibits marked surface overturn, a condensible material, namely liquid water, seems indicated. A layer of liquid water some tens of microns thick, on the average, localized in the top few millimeters of a Martian epilith with refractive index ? 1.6 fits the microwave spectrum, and the infrared and radar data as well. The origin of such a layer of liquid water and its possible exobiological significance are discussed. The distribution of water should be nonuniform over the disk and may help explain discordant microwave observations and the anomalous variation of infrared brigthness temperature with latitude. Further millimeter wave radio and radar studies of Mars are needed.  相似文献   

11.
In this paper the tidal phenomena on the Earth are concisely specified, including solid tides, ocean tides and atmospheric tides due to the luni-solar tide-generating force, and the Earth pole tide due to the motion of the Earth's rotation axis (polar motion); as well as their effects on the Earth rotation. The outcomes of scientific researches of Chinese astronomers on these topics are described in some detail. These researches deal with the mechanisms responsible for tidal effects on the earth rotation, and on the measurements of the Earth rotation parameters. Finally, the effects discovered by Chinese researchers on the measurements of the period and change in period of pulsars are discussed. These effects are very small in magnitude but not negligible.  相似文献   

12.
13.
Potentially hazardous near-Earth objects which can impose a significant threat on life on the planet have generated a lot of interest in the study of various asteroid deflection strategies. There are numerous asteroid deflection techniques suggested and discussed in the literature. This paper is focused on one of the non-destructive asteroid deflection strategies by attaching a long tether–ballast system to the asteroid. In the existing literature on this technique, very simplified models of the asteroid-tether–ballast system including a point mass model of the asteroid have been used. In this paper, the dynamical effect of using a finite size asteroid model on the asteroid deflection achieved is analyzed in detail. It has been shown that considering the finite size of the asteroid, instead of the point mass approximation, can have significant influence on the deflection predicted. Furthermore the effect of the tether-deployment stage, which is an essential part of any realistic asteroid deflection mission, on the predicted deflection is studied in this paper. Finally the effect of cutting the tether on the deflection achieved is analyzed and it has been shown that depending on the orbital properties of the asteroid as well as its size and rotational rate, cutting the tether at an appropriate time can increase the deflection achieved. Several numerical examples have been used in this paper to elaborate on the proposed technique and to quantitatively analyze the effect of different parameters on the asteroid deflection.  相似文献   

14.
In this paper results and analysis of geomagnetic observations during previous 5 solar eclipses occurred in China are summarized. They are solar eclipses: No. 1, on 19 June 1936 in Heilongjiang of NE China; No. 2, on 21 September 1941 in Fujian; No. 3, on 19 April 1958 in Hainandao; No. 4, on 22 September 1968 in Xinjiang; and No. 5, on 16 February 1980 in Yunnan of SW China. The authors took part in the last 2 expeditions and joint programmes in the track of totality.The methods of evaluation for eclipse effects on the geomagnetic field are briefly described both for the quiet and disturbed days. The discussion of these data is made with reference to Chapman's theoretical consideration on optical eclipse effect, together with the quiet-day overhead current systems in the upper atmosphere. We conclude that optical eclipse effects are easily observable under favourable conditions, and further observations are essential to establish the yet unknown effects due to corpuscular eclipses.  相似文献   

15.
Richard J. Pike 《Icarus》1976,27(4):577-583
Inadvisable departures from tradition in naming newly mapped features on Mars, Mercury, and the Moon have been implemented and proposed since 1970. Functional need for place names also has become confused with cartographic convenience. Much of the resulting new nomenclature is neither unique, efficient, nor imaginative. The longstanding classical orientation in Solar System geography needs to be firmly reasserted. The Mädler scheme for designating smaller craters on the Moon should be retained and extended to the farside. Names of surface features on other bodies might best reflect the traditional connotations of planet and satellite names: for example, most crates on Mars would be named for mythical heroes and military personalities in ancient history, craters on Mercury might commemorate explorers or commercial luminaries, and features on Venus would bear the names of famous women.  相似文献   

16.
Ralph D. Lorenz 《Icarus》2002,156(1):176-183
General constraints on geyser phenomena are developed and applied to speculative methane geysers on Titan. Variation of boiling point with depth of ethane-methane-nitrogen fluids is found to be of order 0.3 K m−1, in contrast with around 2 K m−1 for water on Earth. It is found that geysers are possible on Titan but require enhancements of ∼100 above global-average geothermal heat flux, a factor similar to that required on Earth. Eruption velocities of order 25 m s−1 appear to be typical for 10-m-deep geyser vents on both Earth and Titan. While eruption velocities on Earth are usually limited by the low sound speed in water-steam mixtures, sound speeds in Titan fluids are higher and the Titan limit is imposed by the available energy in the boiling fluid. Eruption intervals should be nearly the same for geysers with equivalent plumbing. There is an interesting symmetry between geysers on Titan and those on Earth: The volatility of the relevant fluid scales with the available heat flow.  相似文献   

17.
Solar System Research - The article presents new results on motion modeling and creation of ephemeris of satellites of asteroids based on observations. In previous work on the project, ephemeris of...  相似文献   

18.
The distribution of minerals on the lunar surface is information which could contribute to studying lunar origin and evolution. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, ilmenite, and plagioclase on the lunar surface has been mapped based on Hapke radiative transfer model and linear unmixing of spectra with Clementine UVVIS/NIR data. The results have been validated on the basis of minerals modal abundance data of the Apollo samples, and problems in the minerals abundance mapping have been analyzed. The validation based on analysis data of Apollo samples indicates that plagioclase mapped in this paper represents the total abundance of plagioclase and agglutinitic glass. The minerals mapping results show that the lunar surface is mainly composed of pyroxene, plagioclase, agglutinitic glass, and ilmenite. Basalt in the lunar mare is mainly composed of clinopyroxene and ilmenite, and lunar highland is mainly composed of plagioclase and agglutinitic glass. Orthopyroxene is mainly distributed on the north of Mare Imbrium, on the south of Maria and Aitken Basin. According to our results, there is probably no large area of olivine distribution on the lunar surface which is different from earlier published results. Therefore, emphasis should be put on the olivine distribution in the minerals mapping using hyperspectral data such as M3 of Chandrayaan-1 and IIM of ChangE-1.  相似文献   

19.
Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.  相似文献   

20.
We address impact cratering on Io and Europa, with the emphasis on the origin of small craters on Europa as secondary to the primary impacts of comets on Io, Europa, and Ganymede. In passing we also address the origin of secondary craters generated by Zunil, a well-studied impact crater on Mars that is a plausible analog to impact craters on Io. At nominal impact rates, and taking volcanic resurfacing into account, we find that there should be 1.3 impact craters on Io, equally likely to be of any diameter between 100 m and 20 km. The corresponding model age of Europa's surface is between 60 and 100 Ma. This range of ages does not include a factor three uncertainty stemming from the uncertain sizes and numbers of comets. The mass of basaltic impact ejecta from Io to reach Europa is found to meet or exceed the micrometeoroid flux as a source of rock-forming elements to Europa's ice crust. To describe impact ejecta in more detail we adapt models for impact-generated spalls and Grady-Kipp fragments originally developed by Melosh. Our model successfully reproduces the observed size-number distributions of small craters on both Mars and Europa. However, the model predicts that a significant fraction of the 200-500 m diameter craters on Europa are not traditional secondary craters but are instead sesquinary craters caused by impact ejecta from Io that had gone into orbit about Jupiter. This prediction is not supported by observation, which implies that high speed spalls usually break up into smaller fragments that make smaller sesquinary craters. Iogenic basalts are also interesting because they provide stratigraphic horizons on Europa that in principle could be used to track historic motions of the ice, and they provide materials suitable to radiometric dating of Europa's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号