首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theories of meridional circulation and differential rotation in stellar convective zones predict trends in surface flow patterns on main-sequence stars that are amenable to direct observational testing. Here I summarise progress made in the last few years in determining surface differential rotation patterns on rapidly-rotating young main-sequence stars of spectral types F, G, K and M. Differential rotation increases strongly with increasing effective temperature along the main sequence. The shear rate appears to increase with depth in the sub-photospheric layers. Tidal locking in close binaries appears to suppress differential rotation, but better statistics are needed before this conclusion can be trusted. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In the solar convection zone, rotation couples with intensely turbulent convection to build global-scale flows of differential rotation and meridional circulation. Our sun must have rotated more rapidly in its past, as is suggested by observations of many rapidly rotating young solar-type stars. Here we explore the effects of more rapid rotation on the patterns of convection in such stars and the global-scale flows which are self-consistently established. The convection in these systems is richly time dependent and in our most rapidly rotating suns a striking pattern of spatially localized convection emerges. Convection near the equator in these systems is dominated by one or two patches of locally enhanced convection, with nearly quiescent streaming flow in between at the highest rotation rates. These active nests of convection maintain a strong differential rotation despite their small size. The structure of differential rotation is similar in all of our more rapidly rotating suns, with fast equators and slower poles. We find that the total shear in differential rotation, as measured by latitudinal angular velocity contrast, ΔΩ, increases with more rapid rotation while the relative shear, ΔΩ/Ω, decreases. In contrast, at more rapid rotation the meridional circulations decrease in both energy and peak velocities and break into multiple cells of circulation in both radius and latitude. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In the outer envelope of the Sun and in other stars, differential rotation and meridional circulation are maintained via the redistribution of momentum and energy by convective motions. In order to properly capture such processes in a numerical model, the correct spherical geometry is essential. In this paper I review recent insights into the maintenance of mean flows in the solar interior obtained from high-resolution simulations of solar convection in rotating spherical shells. The Coriolis force induces a Reynolds stress which transports angular momentum equatorward and also yields latitudinal variations in the convective heat flux. Meridional circulations induced by baroclinicity and rotational shear further redistribute angular momentum and alter the mean stratification. This gives rise to a complex nonlinear interplay between turbulent convection, differential rotation, meridional circulation, and the mean specific entropy profile. I will describe how this drama plays out in our simulations as well as in solar and stellar convection zones. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper, we present a new method for measuring the surface differential rotation of cool stars with rotation periods of a few days, for which the sparse phase coverage achievable from single-site observations generally prevents the use of more conventional techniques. The basic idea underlying this new analysis is to obtain the surface differential rotation pattern that minimizes the information content of the reconstructed Doppler image through a simultaneous fit of all available data.
Simulations demonstrate that the performance of this new method in the case of cool stars is satisfactory for a variety of observing strategies. Differential rotation parameters can be recovered reliably as long as the total data set spans at least 4 per cent of the time for the equator to lap the pole by approximately one complete cycle. We find in particular that these results hold for potentially complex spot distributions (as long as they include a mixture of low- and high-latitude features), and for various stellar inclination angles and rotation velocities. Such measurements can be obtained from either unpolarized or polarized data sets, provided their signal-to-noise ratio is larger than approximately 500 and 5000 per 2 km s−1 spectral bin, respectively.
This method should therefore be very useful for investigating differential rotation in a much larger sample of objects than what has been possible up to now, and should hence give us the opportunity of studying how differential rotation reacts to various phenomena operating in stellar convective zones, such as tidal effects or dynamo magnetic field generation.  相似文献   

6.
The outer layers of Sun-like stars are regions of rapid spatial variation which modulate the p-mode frequencies by partially reflecting the constituent acoustic waves. With the accuracy that has been achieved by current solar observations, and that is expected from imminent stellar observations, this modulation can be observed from the spectra of the low-degree modes. We present a new and simple theoretical calculation to determine the leading terms in an asymptotic expansion of the outer phase of these modes, which is determined by the structure of the surface layers of the star. Our procedure is to compare the stellar envelope with a plane-parallel polytropic envelope, which we regard as a smooth reference background state. Then we can isolate a seismic signature of the acoustic phase and relate it to the stratification of the outer layers of the convection zone. One can thereby constrain theories of convection that are used to construct the convection zones of the Sun and Sun-like stars. The accuracy of the diagnostic is tested in the solar case by comparing the predicted outer phase with an exact numerical calculation.  相似文献   

7.
Sequences of Doppler images of the young, rapidly rotating late-type stars AB Dor and LQ Hya show that their equatorial angular velocity and the amplitude of their surface differential rotation vary versus time. Such variations can be modelled to obtain information on the intensity of the azimuthal magnetic stresses within stellar convection zones. We introduce a simple model in the framework of the mean-field theory and discuss briefly the results of its application to those solar-like stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Dynamo action within the cores of Ap stars may offer intriguing possibilities for understanding the persistent magnetic fields observed on the surfaces of these stars. Deep within the cores of Ap stars, the coupling of convection with rotation likely yields magnetic dynamo action, generating strong magnetic fields. However, the surface fields of the magnetic Ap stars are generally thought to be of primordial origin. Recent numerical models suggest that a primordial field in the radiative envelope may possess a highly twisted toroidal shape. We have used detailed 3-D simulations to study the interaction of such a twisted magnetic field in the radiative envelope with the core-dynamo operating in the interior of a 2 solar mass A-type star. The resulting dynamo action is much more vigorous than in the absence of such a fossil field, yielding magnetic field strengths (of order 100 kG) much higher than their equipartition values relative to the convective velocities. We examine the generation of these fields, as well as the growth of large-scale magnetic structure that results from imposing a fossil magnetic field. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress  | BsB φ|  , averaged over the convection zone, is found to range from ∼0.04 to  ∼0.14 T2  . If the poloidal mean magnetic field   B s   is of the order of 0.01 T, as indicated by the Zeeman–Doppler imaging maps of those stars, then the azimuthal mean field   B φ  can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.  相似文献   

10.
An αΩ dynamo is considered responsible for magnetic activity in late K/early M main sequence stars, which is expected to be enhanced in later types as the surface convection zone deepens. At about spectral type M3, where the star presumably becomes fully convective, the magnetic field is theorized to change in character, switching to a more uniform, turbulence‐generated surface field. As a consequence, the nature of activity is expected to change at later spectral types. In field stars, age, mass, rotation and perhaps metallicity play a role in determining the activity level, but the effects are difficult to disentangle. Therefore, open clusters with a more homogeneous sample can provide valuable information on the dynamo operation and magnetic activity of lower main sequence stars. We present preliminary results of our spectroscopic study for activity indicators among the lower main sequence stars of the intermediate age (700 My) open cluster Praesepe. Chromospheric activity as manifested by the presence/absence of Hα in late K/M stars is presented, and other activity indicators are discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present surface spot maps of the K2V primary star in the pre-cataclysmic variable binary system, V471 Tau. The spot maps show the presence of large high-latitude spots located at the sub-white dwarf longitude region. By tracking the relative movement of spot groups over the course of four nights (eight rotation cycles), we measure the surface differential rotation rate of the system. Our results reveal that the star is rotating rigidly with a surface shear rate,  dΩ= 1.6 ± 6 mrad d−1  . The single active star AB Dor has a similar spectral type, rotation period and activity level as the K star in V471 Tau, but displays much stronger surface shear  (46 < dΩ < 58 mrad d−1)  . Our results suggest that tidal locking may inhibit differential rotation; this reduced shear, however, does not affect the overall magnetic activity levels in active K dwarfs.  相似文献   

12.
From a set of high-resolution spectral observations of late type giant stars we used Doppler imaging to derive time-series temperature maps of the stellar surfaces. Using these temperature maps, it is possible to track the temporal changes of the spot features and derive estimates of the strength and sign of the differential surface rotation of these stars. Looking into the latitudinal changes of the surface maps, it is also possible to derive meridional flows on these stars. But due to the lower accuracy of the latitudes of the reconstructed spot features, the data requirements are higher than for the detection of differential rotation. Nevertheless, a correlation between the differential rotation and meridional flow estimates is suggested. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Small levels of turbulence can be present in stellar radiative interiors due to, e.g., the instability of rotational shear. In this paper we estimate turbulent transport coefficients for stably stratified rotating stellar radiation zones. Stable stratification induces strong anisotropy with a very small ratio of radial‐to‐horizontal turbulence intensities. Angular momentum is transported mainly due to the correlation between azimuthal and radial turbulent motions induced by the Coriolis force. This non‐diffusive transport known as the Λ‐effect has outward direction in radius and is much more efficient compared to the effect of radial eddy viscosity. Chemical species are transported by small radial diffusion only. This result is confirmed using direct numerical simulations combined with the test‐scalar method. As a consequence of the non‐diffusive transport of angular momentum, the estimated characteristic time of rotational coupling (≲100 Myr) between radiative core and convective envelope in young solar‐type stars is much shorter compared to the time‐scale of Lithium depletion (∼1 Gyr) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The surface differential rotation of active solar‐type stars can be investigated by means of Doppler and Zeeman‐Doppler Imaging, both techniques enabling one to estimate the short‐term temporal evolution of photospheric structures (cools spots or magnetic regions). After describing the main modeling tools recently developed to guarantee a precise analysis of differential rotation in this framework, we detail the main results obtained for a small number of active G and K fast rotating stars. We evoke in particular some preliminary trends that can be derived from this sample, bearing the promise that major advances in this field will be achieved with the new generation of spectropolarimeters (ESPaDOnS/CFHT, NARVAL/TBL). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

16.
We present the first measurements of surface differential rotation on a pre-main-sequence binary system. Using intensity (Stokes I) and circularly polarized (Stokes V) time-series spectra, taken over 11 nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator–pole lap times as determined from the intensity spectra are 80 d for the primary star and 163 d for the secondary. Similarly, for the magnetic spectra we obtain equator–pole lap times of 44 and 71 d, respectively, showing that the shearing time-scale of magnetic regions is approximately half of that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral-type main-sequence single stars. The results for HD 155555 are therefore in contrast to those found in other, more evolved, binary systems where negligible or weak differential rotation has been discovered. We discuss two possible explanations for this: first that at the age of HD 155555 binary tidal forces have not yet had time to suppress differential rotation and secondly that the weak differential rotation previously observed on evolved binaries is a consequence of their large convection zone depths. We suggest that the latter is the more likely solution and show that both temperature and convection zone depth (from evolutionary models) are good predictors of differential rotation strength. Finally, we also examine the possible consequences of the measured differential rotation on the interaction of binary star coronae.  相似文献   

17.
We re-investigate UZ Libræ spectra obtained at KPNO in 1998 and 2000. From the 1998 data we compose 11 consecutive Doppler images using the Ca I-6439, Fe I-6393 and Fe I-6411 lines. Applying the method of average cross-correlation of contiguous Doppler images we find anti-solar differential rotation with a surface shear of α ≈ –0.03. The pilot application of the local correlation tracking technique for the same data qualitatively confirms this result and indicates complex flow pattern on the stellar surface. From the cross-correlation of the two available Doppler images in 2000 we also get anti-solar differential rotation but with a much weaker shear of α ≈ –0.004. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
By using a non-local convection theory, both the local and nonlocal convective envelope models of evolutionary series of stars with masses from 1 to 30 solar masses are calculated. The problem of supersonic convection is reviewed. The results show that the convective velocities in the stellar atmosphere are seriously overestimated by the local mixing-length theory. Convection is strongly supersonic in the atmospheres of yellow giant and super-giants, while the local mixing-length theory is used. However, it becomes subsonic for most stars when convection returns to the normal nonlocal treatment. Convection velocities increase with increase of luminosities of stars. There is still weak supersonic convection in few red and yellow giant and super-giants. It is suspected whether this supersonic convection in stellar atmospheres is true.  相似文献   

19.
Variability studies are an important tool to investigate key properties of stars and brown dwarfs. From photometric monitoring we are able to obtain information about rotation and magnetic activity, which are expected to change in the mass range below 0.3 solar masses, since these fully convective objects cannot host a solar‐type dynamo. On the other hand, spectroscopic variability information can be used to obtain a detailed view on the accretion process in very young objects. In this paper, we report about our observational efforts to analyse the variability and rotational evolution of young brown dwarfs and very low‐mass stars. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
S. V. Berdyugina 《Solar physics》2004,224(1-2):123-131
The modulation of solar activity closely follows the solar rotation period suggesting the existence of long-lived active regions at preferred longitudes. For instance, two preferred active longitudes in both southern and northern hemispheres are found to be persistent at the century time scale. These regions migrate with differential rotation and periodically alternate their activity levels showing a flip-flop cycle. The pattern and behaviour of active longitudes on the Sun is similar to that on cool, rapidly rotating stars with outer convective envelopes. This suggests that the magnetic dynamo, including non-axisymmetric magnetic fields and flip-flop cycles, is also similar in these stars. This allows us to overview the phenomenon of stellar magnetic activity and to study it in detail on the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号