首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beach and nearshore levels have been measured yearly along the entire Dutch North Sea coast since the mid 1960s (the ‘Jarkus’ data set). This data set has been processed to create separate time series of beach volumes at longshore intervals of about 250 m, giving over 2000 time series in total. These time series typically show a high annual variability with weak long-term trends. The present Dutch national coastal management strategy involves making year-ahead forecasts of beach volumes by extrapolating a linear least squares trend through the previous ten years' data separately for each longshore location. In this paper, these forecasts are shown to be worse than the trivial forecast in which the most recently measured beach volume persists unchanged into the future, with a mean square error (MSE) about 13.5% worse (equivalent to a root mean square error (RMSE) 6.5% worse). Improvements to these forecasts are sought by testing six different univariate forecasting methods. The two best methods improve on the persistence of the most recently measured beach volume by about 15% MSE (8% RMSE), and on the presently used linear least squares trend method by about 25% MSE (13.5% RMSE). Further comparisons are made between the forecasting methods to investigate several factors. These include varying the amount of fitting data for the forecasting methods, smoothing of the fitting data, different methods for interpolating gaps in the data, the longshore aggregation of data, making forecasts for coastal profiles with and without nourishments, and making forecasts up to five years ahead. These forecasting methods are designed as a coastal management tool to provide yearly forecasts quickly and routinely for the whole Dutch North Sea coast.  相似文献   

2.
The bivalve Spisula subtruncata is usually abundant in shallow coastal waters along the Dutch coast. However, its biomass has been decreasing since 1995. In order to assess whether reproductive failure may be the cause of the observed decline over the last decades, the energy investment in reproduction of a population of S. subtruncata from central Dutch coastal waters was studied. The population studied consisted of individuals of up to four years old. Shell length reached maximum values of around 32 mm and individual total body, somatic and gonadal ash-free dry mass reached maximum values of about 278 mg AFDM, 252 mg AFDM and 76 mg AFDM, respectively. A clear seasonal cycle in somatic and gonadal mass was observed. Somatic and gonadal mass indices increased in early spring and reached maximum values during summer, followed by a decrease to minimum values at the beginning of the following year. Spawning was in June–July and settlement of spat seems to have occurred in July–August. Mean oocyte diameter was 57.43 ± 0.03 μm, corresponding to a volume of 98972 μm3. These results suggested that reproductive failure was not the cause of the current population decline. Most likely, unsuccessful settlement of spat and/or severe predation during the first months of life were responsible for the observed patterns.  相似文献   

3.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

4.
Water samples were collected monthly for 3 years at 66°N, 2°E in the Norwegian Sea, 250 nautical miles off the Norwegian coast. Concentrations of mono- and polysaccharides were measured with the 2,4,6-tripyridyl-s-triazine (TPTZ) spectroscopic method. Total dissolved carbohydrates varied from 3.4 to 28.2 μM C of all samples and the ratio of carbohydrate to dissolved organic C (DOC) varied from an average of 14% at 0–25 m depth to 11% at 800–2000 m depth. This indicates that dissolved carbohydrates were a significant constituent of DOC in the Norwegian Sea. Polysaccharides varied from 0.4 to 21.5 μM C and monosaccharides from 0.7 to 11.7 μM C at all depths. The level of monosaccharides was relatively constant at 2.8–3.2 μM C below the euphotic zone, whereas polysaccharides showed more varying concentrations. Dissolved carbohydrates accumulated during the productive season, reaching maximum concentrations during summer although interannual differences were observed. A significant positive correlation between Chl a and soluble carbohydrate was found in one growing season with nutrient analyses. Average values for total carbohydrates were highest in the surface – 0 to 25 m – with 13.3 μM C and decreased to 8.4 μM C at 800–2000 m depth. The ratio of monosaccharides to polysaccharides exhibited a marked seasonal variation, increased from January to a maximum in June of 1.1, and declined to 0.5 in July.  相似文献   

5.
The south-western shoreline along the entrance channel inside the Port of Richards Bay has experienced continued erosion. Four groynes were constructed to stabilise the shoreline. Monitoring of shoreline evolution provided valuable data on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while the other is “protected” according to the Wiegel [Wiegel, R. L. (1964). Oceanographical engineering. Prentice Hall, Inc., Englewood Cliffs, NJ.] classification. The shoreline accreted progressively at the two groynes at 0.065 m/day and 0.021 m/day respectively. The shorelines accreted right up to the most seaward extremity of the groynes. Equilibrium shorelines were reached within about 3.5 years to 4 years, which compare well with other sites around the world. The mean wave incidence angle is large and was found to be about 22°. The median sand grain sizes were 0.33 mm and 0.37 mm. The groynes acted as total traps, the beach surveys were extended to an adequate depth, and cross-shore sediment transport did not cause appreciable net sand losses into the entrance channel. The net longshore transport rate along the study area, which is north-westbound, is only slightly lower than the gross longshore transport. The actual net longshore transport rates are 18 000 m3/year and 4 600 m3/year respectively at the two groynes. A rocky area limits the availability of sand at one groyne. There is fair agreement between the predicted and measured longshore transport rates at the other groyne.  相似文献   

6.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

7.
β-dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) concentrations were recorded from September 1999 to September 2000 in two geographically close ecosystems, differently affected by eutrophication: the Little Bay of Toulon and the Niel Bay (N.W. Mediterranean Sea, France). Little Bay had higher nutrient levels ([NO3]max. = 30.3 μM; [PO43−]max. = 0.46 μM) and higher chlorophyll a concentrations ([chl a]mean = 2.4 μg/L) compared to Niel Bay ([NO3]max. = 19.7 μM; [PO43−]max. = 0.17 μM; [chl a]mean = 0.4 μg/L). In the two sites, we measured dissolved (DMSPd < 0.2 μm) and particulate DMSP (DMSPp > 0.2 μm) concentrations. The DMSPp was particularly analysed in the 0.2–5, 5–90 and > 90 μm fractions. In the eutrophicated Little Bay, DMSPd concentrations showed a clear seasonality with high values from January to March (124–148 nM). The temporal profile of the DMSPp concentrations was similar, peaking in February–March (38–59 nM). In the less eutrophic Niel Bay, DMSPp concentrations were much lower (6–9 nM in March–April), whereas DMSPd concentrations were relatively high (110–92 nM in February–March). DMS concentrations were elevated from the end of the winter to the spring in Little Bay, ranging from 3 nM in October to 134 nM in March. In the less eutrophic Niel Bay, lower DMS levels were observed, generally not exceeding 20 nM. Each particulate fraction (0.2–5; 5–90; > 90 μm) contained less DMSP in Niel Bay than in Little Bay. At both sites, the 5–90 μm fraction made up most of the DMSPp. This 5–90 μm fraction consisted of microphytoplankton, principally Dinophyceae and Bacillariophyceae. The 5–90 μm biomass calculated from cell biovolumes, was more abundant in Little Bay where the bloom at the end of the winter (165 μg/L in March) occurred at the same time as the DMSP peaks. The estimated DMSPp to biomass ratio for the 5–90 μm fraction was always higher in Little Bay than in Niel Bay. This suggests that the high DMSP levels recorded in Little Bay were not only due to a large Dinophyceae presence in this ecosystem. Indeed, the peak of DMSPp to biomass ratio obtained from cell biovolumes (0.23 nmol/μg in March) was consistent with the proliferation of Alexandrium minutum. This Dinophyceae species may account for between 50% (2894 cells/L) and 63% (4914 cells/L) of the total phytoplankton abundance in the Little Bay of Toulon.  相似文献   

8.
A technique is described to observe and quantify wave-by-wave bed-level changes in the swash zone. The ultrasonic instrument system is non-contact with the beach face surface being measured and the sensors remain outside of the fluid flows causing sediment movement. Sensor resolution combined with the electronic noise inherent within a digital network data-logging system results in a (conservative) measurement accuracy of ± 1 mm, equating to a couple of sand grain diameters in height. Illustrative field results demonstrate the practical use of the instrumentation, and a simple data pre-processing method to separate swashes and intervening bed-level ‘events’ is discussed. These example data reveal rather complex fluctuations of the bed observed over time periods of minutes to hours. Rather strikingly, gross bed-level changes per wave are revealed to be up to many orders of magnitude larger than the observed net rate of beach face evolution. It is outlined how observations of successive bed-level changes at multiple locations within a dense grid, combined with a consideration of sediment continuity, will now enable the total net sediment transported per uprush–backwash to be quantified.  相似文献   

9.
Measurements of the naturally occurring radioisotopes 223Ra (t1/2 = 11.4 days) and 224Ra (t1/2 = 3.66 days) in southern Rhode Island salt ponds were combined with a simple model to obtain independent estimates of the age of these coastal waters. Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, beginning January 2002 through August 2003. Surface water activities ranged from 1–78 dpm 100 L− 1 and 5–885 dpm 100 L− 1 for 223Ra and 224Ra, respectively. Porewater radium activities ranged from 3 to 715 dpm 100 L− 1 for 223Ra, and 57–4926 dpm 100 L− 1 for 224Ra. Results indicate seasonally varying water mass ages for Ninigret (5–12 days), Winnapaug (2–6 days) and Pt. Judith-Potter Ponds (1–9 days) and, in contrast, relatively constant ages for Green Hill (5–7 days) and Quonochontaug Ponds (3–6 days).  相似文献   

10.
Bred-ensemble ocean forecast of loop current and rings   总被引:1,自引:0,他引:1  
X.-Q. Yin  L.-Y. Oey   《Ocean Modelling》2007,17(4):300-326
Ocean forecasting with a General Circulation Model (GCM) commonly begins from an initial analysis obtained by data assimilation. Instead of a single initial state, bred-ensemble forecast [BEnF; which is used for weather forecasting at the National Centers for Environmental Prediction] begins from an ensemble of initial states obtained by using the GCM to breed fast-growing modes into the analysis. Here we apply the technique to forecast the locations and strengths of the Loop Current and rings from July through September 2005. Model results are compared against satellite observations, surface drifter trajectories, and moored currents. It is found that BEnF gives closer agreements with observations than the conventional single forecast. The bred-vectors (perturbed minus unperturbed state-vectors) have growth rates ≈0.04–0.08 day−1 and spatial (cyclone–anticyclone) scales ≈200–300 km suggestive of baroclinic instability mode in the Loop Current and rings. As in atmospheric applications, initializations with these growing vectors contribute to the more accurate ensemble mean forecast.  相似文献   

11.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

12.
In parallel with the process of lead removal from gasoline in Italy, a research programme was undertaken to study the lead content of Adriatic coastal seawater. In the period 2000–2004 seawater was collected systematically at three sites along the coast line close to the city of Ancona: (i) the mouth of the River Esino, (ii) an area close to the Api refinery and (iii) Portonovo beach, a less impacted zone located along the coast of Mt. Conero. All samples were analyzed by Square-Wave Anodic-Stripping Voltammetry (SWASV). The results show that dissolved Pb content in coastal seawater diminished from an overall median value of 0.25 nmol/L in 2000–2001 to 0.12 nmol/L in 2003–2004, with a decrease of about 50% (statistically significant at 95% significance level). This decrease has been correlated to the concurrent decrease of lead consumption in gasoline in Italy which led to a reduction of ~ 65% Pb emissions into the atmosphere in the same period (r = 0.8791, p < 0.05).  相似文献   

13.
A Navier–Stokes solver is used to examine steep waves as they run up a steep beach (10.54°). The volume of fluid method (VOF) is used to model the free surface. Comparison with experimental results shows reasonable overall agreement in the prediction of the free-surface, velocities and accelerations within the flow. A spurious feature at the free-surface was found which does reduce the quality of the results. For a steep wave we see the transition from a steep wave front to a smooth run-up tongue at the beach that is in qualitative agreement with experiment.  相似文献   

14.
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005–06. Surveys covered eastern waters in 2005 (38.8–43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs (n = 10,393) and larvae (n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950–2640 per m−2) were obtained off north-eastern Tasmania (40.5–41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0–37.7°S) in October 2002–03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125–325 m deep and median temperatures 13.5–14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.  相似文献   

15.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study.  相似文献   

16.
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters.  相似文献   

17.
Forecasting seasonal to multi-year shoreline change   总被引:1,自引:0,他引:1  
This contribution details a simple empirical model for forecasting shoreline positions at seasonal to interannual time-scales. The one-dimensional (1-D) model is a simplification of a 2-D behavioural-template model proposed by Davidson and Turner (2009). The new model is calibrated and tested using five-years of weekly video-derived shoreline data from the Gold Coast, Australia. The modelling approach first utilises a least-squares methodology to calibrate the empirical model coefficients using the first half of the dataset of observed shoreline movement in response to known forcing by waves. The model is then verified by comparison of hindcast shoreline positions to the second half of the observed shoreline dataset. One thousand synthetic time-series of wave height and period are generated that encapsulate the statistical characteristics of the modelled wave field, retaining the observed seasonal variability and sequencing characteristics. The calibrated model is used in conjunction with the simulated wave time-series to perform Monte Carlo forecasting of the resulting shoreline positions. The ensemble-mean of the 1000 individual five-year shoreline simulations is compared to the unseen shoreline time-series. A simple linear trend forecast of the shoreline position was used as a baseline for assessing the performance of the model. The model performance relative to this baseline prediction was quantified by several objective methods, including cross-correlation (r), root mean square (RMS) error analysis and Brier Skill tests. Importantly, these tests involved no prior knowledge of either the wave forcing or shoreline response. The new forecast model was found to significantly improve shoreline predictions relative to the simple linear trend model, capturing well both the trend and seasonal shoreline variabilities observed at this site. Brier Skill Scores (BSS) indicate that the model forecasts based on unseen data were rated as ‘excellent’ (BSS = 0.83), and root mean square errors were less than 7 m (≈ 14% of the observed variability). The standard deviations of the 1000 individual simulations from ensemble-averaged ‘mean’ forecast were found to provide a useful means of predicting the higher-frequency (individual storm) shoreline variability, with 98% of the observed shoreline data falling within two standard deviations of the forecast position.  相似文献   

18.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

19.
A mass balance of the naturally occurring short-lived radium isotopes (223,224Ra) in the Venice Lagoon was conducted by an integrated approach combining the directly estimated individual Ra contributions and hydrodynamic model results. Hydrodynamic data allows for the calculation of the Ra mass balance in sub-sections of the Venice Lagoon (boxes), which are characterized by physically homogeneous properties, instead of investigating the entire lagoon. Utilizing this method, both the seasonal and the spatial variability of the submarine groundwater discharge in the Venice Lagoon have been estimated. Between 14–83 × 109 L d− 1 of water were calculated to flow across the sediment–sea interface, corresponding to 5–28 times the mean annual river input. The submarine groundwater discharge estimates were correlated with the residence time calculation to better understand spatial and seasonal variation.  相似文献   

20.
Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at  70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号