首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

2.
Il-Soo  Kim  Myong-Ho  Park  Byong-Jae  Ryu Kang-Min  Yu 《Island Arc》2006,15(1):178-186
Abstract   Data on the late Quaternary tephra layers, tephrostratigraphy, geochemistry and environment were determined in two sediment cores from the southwestern part of Ulleung Basin (East Sea/Sea of Japan), representing marine-oxygen isotope stages 1–3. The cores consist mainly of muddy sediments that are partly interbedded with silty sands, lapilli tephra and ash layers. The lapilli tephra layers (Ulleung-Oki tephra, 9.3 ka) originating from Ulleung Island consist mainly of massive-type glass shards, whereas the ash layers (Aira-Tanzawa ash, 22.0–24.7 ka) derived from southern Kyushu Island are mainly composed of typical plane-type and bubble-wall glasses that are higher in SiO2 and lower in Na2O + K2O than the lapilli tephra layers. Except for the tephra layers, fine-grained sediments throughout the core sections are mostly of marine origin based on geochemical data (C/N ratios, hydrogen index, S2 peak) and Tmax. In particular, organic carbon contents increased during Termination I, probably as a result of an influx of the deglacial Tsushima Current through the Korea Strait.  相似文献   

3.
Tomokazu  Tokada 《Island Arc》1998,7(4):609-620
The Ina district of the Ryoke Belt is divided into two mineral zones, based on the mineral parageneses of the pelitic and psammitic rocks at the peak metamorphism. A biotite–muscovite zone (quartz + plagioclase + biotite + muscovite with or without K-feldspar) constitutes the northwestern part, and a biotite–cordierite–K-feldspar zone (quartz + plagioclase + biotite + cordierite + K-feldspar) comprises the central to southern and eastern parts. The isograd reaction between two mineral zones is defined by a divariant reaction: Mg-rich biotite + muscovite + quartz = Fe-rich biotite + cordierite + K-feldspar + H2O (1), which, in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, occurs at ∼ 590 °C at 0.2 GPa and 660 °C at 0.4 GPa. Fibrolite accompanied by andalusite porphyroblasts in aluminous pelitic rocks of the biotite–muscovite zone and the low-grade part of the biotite–cordierite–K-feldspar zone, suggests that sillimanite was the stable aluminosilicate at the peak metamorphic condition throughout the area. In the high-grade part of the biotite–cordierite–K-feldspar zone, fibrolite mostly occurs as inclusions in cordierite or in plagioclase. The phase relations and the compositional zoning of plagioclase in relation to fibrolite inclusions suggest that fibrolite was formed under relatively high-pressure conditions, and that partial melting took place.  相似文献   

4.
Haixiang  Zhang  Hecai  Niu  Hiroaki  Sato  Xueyuan  Yu  Qiang  Shan  Boyou  Zhang  Jun'ichi  Ito  Takashi  Nagao 《Island Arc》2005,14(1):55-68
Abstract   Volcanic rocks consisting of adakite and Nb-enriched basalt are found in the early Devonian Tuoranggekuduke Group in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, northwest China. The geochemical characteristics of the andesitic and dacitic rocks in this area resemble that of adakites. The relatively high Al2O3, Na2O and MgO content and Mg values indicate that the adakites were generated in relation to oceanic slab subduction rather than the partial melting of basaltic crust. A slightly higher SrI and a lower ɛ Nd( t  = 375 Ma) compared to adakites of mid-oceanic ridge basalt (MORB) imply that slab sediments were incorporated into these adakites during slab melting. The Nb-enriched basalt lavas, which are intercalated in adakite lava suite, are silica saturated and are distinguished from the typical arc basalts by their higher Nb and Ti content (high field strength element enrichment). They are derived from the partial melting of the slab melt-metasomatized mantle wedge peridotite. Apparently, positive Sr anomalies and a slightly higher heavy rare earth element content in these adakites compared to their Cenozoic counterparts indicate that the geothermal gradient in the Paleo-Asian Oceanic subduction zone and the depth of the Paleo-Asian Oceanic slab melting are between those of their Archean and Cenozoic counterparts. The distribution of the adakites and Nb-enriched basalts in the northern margin of the Kazakhstan-Junggar Plate, northern Xinjiang, indicates that the Paleo-Asian Oceanic Plate subducted southward beneath the Kazakhstan-Junggar Plate in the early Devonian period.  相似文献   

5.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   

6.
Osamu  Ujike  Alan M.  Goodwin  Tomoyuki  Shibata 《Island Arc》2007,16(1):191-208
Abstract   Volcanic rocks from the Upper Keewatin assemblage ( ca 2720 Ma) were geochemically classified into five groups; komatiites, tholeiitic rocks having near-flat primitive mantle-normalized abundance patterns, Nb-enriched basalts and andesites (NEBA) plus normal calc-alkaline (NCA) rocks, adakites and shoshonites. The adakites having [La/Yb]N >30 and <30 were probably derived from felsic magmas formed by partial melting of a subducted slab at relatively greater and smaller depths, respectively. Ascending adakite magmas, by interaction with the overlying mantle wedge, decreased in Al2O3 / Y ratio and selectively lost high-field strength elements, thereby forming mantle sources for both NEBA + NCA and shoshonite magmas. Under the influence of a mantle plume, the source of komatiites, the NEBA + NCA magmas were generated from that part of the mantle wedge metasomatized by adakite magmas having [La / Yb]N <30, and tholeiitic magmas from unmetasomatized part of the same mantle wedge. Magmas of both adakites having [La / Yb]N >30 and shoshonites were generated in a normal Archean Arc system setting.  相似文献   

7.
Abstract   The Lower Sorachi Group of the Sorachi–Yezo Belt in central Hokkaido, Japan is a peculiar accretionary complex characterized by numerous occurrences of greenstones (metabasalts and diabases), which are mostly composed of aphyric basalts. Clinopyroxene-rich phenocryst assemblage in phyric basalts is different from olivine–plagioclase assemblage in mid-oceanic ridge basalts (MORB). The greenstones are geochemically uniform, and show a lower-Ti trend than MORB in an FeO*/MgO-TiO2 diagram, mostly plotting on the island arc tholeiite (IAT) field in a TiO2−10MnO−10P2O5 diagram. In a MORB-normalized spider diagram, the greenstones show a flat pattern from P to Y, which are lower than those of normal mid-oceanic ridge basalt (N-MORB). These indicate that the greenstones were derived by a higher degree of partial melting from a depleted mantle similar to a N-MORB source, and experienced olivine–clinopyroxene fractional crystallization. However, a positive spike of Nb in the spider diagram cannot be explained, and may be attributed to mantle heterogeneity. These characteristics are analogous to those of oceanic plateau basalts (OPB) such as in Ontong Java Plateau, Manihiki Plateau and Nauru Basin, suggesting that the greenstones in the Lower Sorachi Group are of oceanic plateau origin. The present study proposes new field divisions to distinguish OPB from MORB in the conventional FeO*/MgO–TiO2 and TiO2−10MnO−10P2O5 diagrams.  相似文献   

8.
The Izu–Ogasawara arc contains, from east to west, a volcanic front, a back-arc extensional zone (back-arc knolls zone), and a series of across-arc seamount chains that cross the extensional zone in an east-northeast and west-southwest direction and extend into the Shikoku Basin. K–Ar ages of dredged volcanic rocks from these across-arc seamount chains and extension-related edifices in the back-arc region of the Izu–Ogasawara arc were measured to constrain the volcanic and tectonic history of the arc since the termination of spreading in the Shikoku Basin. K–Ar ages range between 12.5 and 1 Ma. Andesitic to dacitic rocks of 12.5–2.9 Ma occur mainly on the western part of the chains. The western part of the chains are the locus of volcanism behind the front which erupted mainly calc-alkaline andesitic lavas. The youngest rocks (< 2.8 Ma), characterized by cpx-ol basalt, occur along the western margin of the back-arc knolls zone. Basaltic rocks of 12.5–2.9 Ma have relatively high concentrations of Na2O (> 2.0 wt%), Zr (> 50 p.p.m.) and Y (> 20 p.p.m.) and low CaO (< 12 wt%). On the other hand, basalts of 2.8–1 Ma have lower Na2O (< 1.8 wt%), Zr (< 50 p.p.m.) and Y (< 20 p.p.m.), but significantly higher CaO (> 12 wt%). The age inferred for the initiation of back-arc rifting (∼ 2.35–2.9 Ma: Taylor 1992 ) behind the current volcanic arc coincides with the time that basalt chemistry changed drastically (eruption of the low-Na2O and high-CaO basalt). This implies that post-2.8 Ma volcanism in the back-arc knolls zone is associated with rifting. Similarly, the change in chemical composition might be explained by a different type of source mantle following rift initiation. Volcanism in the western seamounts ceased after the onset of rifting at ∼ 2.8 Ma.  相似文献   

9.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   

10.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

11.
A second occurrence of chrome-rich clinopyroxene has been discovered as inclusions in orthopyroxene in orthopyroxenite from Maowu, the Dabie Mountains, Central China. The average formula for chrome-rich clinopyroxene can be expressed as (Na0.39Ca0.54)0.93(Mg0.57Fe2+0.06Fe3+0.01Cr0.24Al0.15)1.03Si2.02O6, with a maximum amount of kosmochlor component of 28.52 mol%. The unit cell parameters obtained from a single-crystal are a  = 9.614 Å, b  = 8.800 Å, c =  5.240 Å, β = 106.59°, space group C2 / c . The indices of refraction are α = 1.697, β = 1.704, γ = 1.726. Chrome-rich clinopyroxene, which coexists with chromite, chromian rutile and chromian pyrope, crystallized at a temperature of 1025 °C and very high pressure, and therefore represents a mantle relic. Together with the appearance of low-pressure inclusion mineral assemblage and the estimation of physical–chemical conditions for matrix minerals, the Maowu eclogite–ultramafic complex is considered to be formed during ultrahigh-pressure metamorphism from the mantle-derived protolith.  相似文献   

12.
The Higo metamorphic terrane situated in west-central Kyushu island, southwest Japan, is composed of greenschist- to granulite-facies metamorphic rocks. The southern part of the metamorphic terrane consists mainly of garnet–biotite gneiss and garnet–cordierite–biotite gneiss, and orthopyroxene or cordierite-bearing S-type tonalite with subordinate amounts of hornblende gabbro. Rb–Sr, Sm–Nd and K–Ar isotopic ages for these rocks have been determined here. The garnet–biotite gneiss gives an Sm–Nd age of 227.1 ± 4.9 Ma and a Rb–Sr age of 101.0 ± 1.0 Ma. The hornblende gabbro has an Sm–Nd age of 257.9 ± 2.5 Ma and a K–Ar age of 103.4 ± 1.1 Ma. These age differences of the same samples are due to the difference in the closure temperature for each system and minerals. The garnet-cordierite–biotite gneiss contains coarse-grained garnet with a zonal structure conspicuously distinguished in color difference (core: dark red; rim: pink). Sm–Nd internal isochrons of the garnet core and the rim give ages of 278.8 ± 4.9 Ma (initial 143Nd/144Nd ratio = 0.512311 ± 0.000005) and 226.1 ± 28.4 Ma (0.512277 ± 0.000038), respectively. These ages are close to formation of the garnet core and the rim. It has been previously suggested that the Higo metamorphic terrane belongs to the Ryoke metamorphic belt. But Sr and Nd isotopic features of the rocks from the former are different from those of the Ryoke metamorphic rocks, and are similar to those of the granulite xenoliths contained in the Ryoke younger granite.  相似文献   

13.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   

14.
Seon-Gyu  Choi  V. J. Rajesh  Jieun  Seo  Jung-Woo  Park  Chang-Whan  Oh  Sang-Joon  Pak  Sung-Won  Kim 《Island Arc》2009,18(2):266-281
Collision between the North and South China continental blocks began in the Korean peninsula during the Permian (290–260 Ma). The Haemi area in the Hongseong collision belt (proposed as the eastern extension in South Korea of the Dabie–Sulu collision zone of China) within the Gyeonggi Massif comprises post-collisional high Ba–Sr granite with intermediate enclaves that intruded into the Precambrian rocks. The intermediate enclaves have a shoshonitic affinity whereas the granite is a high-K calc-alkaline variety. The chondrite-normalized rare earth element (REE) pattern with relative enrichment of LREE over HREE and absence of a significant negative Eu anomaly typifies both enclaves and granite. Geochemical similarities of enclaves and granite are attributed to the involvement of enriched mantle sources in their genesis. However, dominant crustal components were involved in the formation of high Ba–Sr granites. A granite crystallization age of 233 ± 2 Ma was obtained from SHRIMP U–Pb zircon dating. This age is slightly younger than the Triassic collision event in the Hongseong Belt. Geochemical data, U–Pb zircon age, and regional tectonics indicate that the Haemi high Ba–Sr granite formed in a post-collisional tectonic environment. A Mesozoic post-collisional lithospheric delamination model can account for the genesis of high Ba–Sr granite in the Haemi area.  相似文献   

15.
Abstract 40Ar–39Ar analysis of phlogopite separated from a plagioclase lherzolite of the Horoman Peridotite Complex, Hokkaido, Japan, has yielded a plateau age of 20.6 ± 0.5 Ma in an environment where the metamorphic fluid was characterized by an almost atmospheric Ar isotopic ratio. The age spectrum is slightly saddle-shaped, implying some incorporation of excess 40Ar during the formation of the phlogopite at a depth. As the phlogopite has been inferred to have formed in veins and/or interstitials during exhumation of the peridotite body, metasomatic fluids, to which ground- and sea water might have contributed, were probably involved in the formation of phlogopite in the crustal environment. A total 40Ar–39Ar age of 129 Ma of a whole rock sample of the plagioclase lherzolite, from which the phlogopite was separated and is representative of the main lithology of the Horoman Peridotite Complex, indicates the occurrence of excess 40Ar. Hence, the age has no geological meaning.  相似文献   

16.
Heat source for Tongonan Geothermal Field   总被引:1,自引:0,他引:1  
Abstract The primary mineral and whole-rock chemistry of 46 core samples from the host rocks of the Tongonan Geothermal Field (the Philippines) have been used to infer the likely composition of the heat source for the system. The host rocks consist of andesite lavas (with intercalated fossiliferous early to mid–Miocene shales and limestone), and a plutonic rock basement ranging in composition from gabbro to granite. The whole rock TiO2, Fe2O3 (total iron), MgO, P2O5 and V data for volcanic and plutonic rocks are colinear on conventional Harker diagrams. This, along with similar hornblende chemistry, age and close spatial relationship suggests that the basement and cover rocks are cogenetic and evolved by low-pressure crystal fractionation. Crystal fractionation models indicate that separation of 60% plagioclase and 30% hornblende from original magma controlled the chemistry of the host rocks. The original Miocene magma chambers beneath the Tongonan field crystallized inwards from the walls at approximately 750°C and 1 kb pressure (3–4 km depth) thus forming a series of plutons or a batholith at drilled depths. A supercritical hydrothermal fluid trapped in the crystallizing, hornblende-granite-pegmatite core of a crystallized Miocene diorite batholith was gradually being released to shallower levels through antithetic cross fractures during creep and uplift along the main branches of the Philippine Fault from the Pliocene. This ascending fluid is now thought to be responsible for the present thermal activity of the field.  相似文献   

17.
The Miocene Tanzawa plutonic complex, consisting mainly of tonalite intrusions, is exposed at the northern end of the Izu–Bonin – Mariana (IBM) arc system as a consequence of collision with the Honshu Arc. The Tanzawa plutonic rocks belong to the calc-alkaline series and exhibit a wide range of chemical variation, from 43 to 75 wt% SiO2. They are characterized by relatively high Ba/Rb and Ce/Nb ratios, and low abundances of K2O, LIL elements, and rare earth elements (REE). Their petrographic and geochemical features indicate derivation from an intermediate parental magma through crystal fractionation and accumulation processes, involving hornblende, plagioclase, and magnetite. The Tanzawa plutonic complex is interpreted to be the exposed middle crust of the IBM arc, which was uplifted during the collision. The mass balance calculations, combining data from melting experiments of hydrous basaltic compositions at lower-to-middle crustal levels, suggest that parental magma and ultramafic restite were generated by dehydration partial melting (∼ 45% melting) of amphibolite chemically similar to low-K tholeiitic basalt. Partial melting of hydrated mafic lower crust might play an important role in felsic middle-crust formation in the IBM arc.  相似文献   

18.
Naotatsu  Shikazono 《Island Arc》1994,3(1):59-65
Abstract Chemical data on hydrothermally altered volcanic rocks from a green tuff belt in Japan indicate that the average rate of Mg removal from seawater due to seawater cycling through back-arc basins in the circum-Pacific region during the early to middle Miocene (25–15 Ma) is estimated to be 2.6±1 × 1013 g/year. This is similar to that through present-day mid-ocean ridges (2.4 × 1013 g/year). Hydrothermal fluxes of K, Ca and Si are calculated to be 4.2±1.6 × 1013 g/year, 4.3±1.7×1013 g/year and 1.0±0.4 × 1014 g/year, respectively. These calculated results indicate that the seawater/volcanic rocks interaction at subduction-related tectonic settings have to be taken into account in considering the geochemical mass balance of seawater over geologic time.  相似文献   

19.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

20.
Off the southern coast of Hokkaido the Hidaka-oki (offshore Hidaka) basin has developed on the western flank of a collision suture under the influence of long-standing compressional plate motion and provoked tectonic stresses around the northwestern Pacific rim throughout the late Cenozoic. The basin forming history of the Japan arc and Kuril arc collision zone is described on the basis of seismic reflection data interpretation. We identify two stages of basin formation: the older (late Oligocene-Miocene) faulted en echelon graben (pull-apart basin) and younger (Plio-Pleistocene) regional downwarping. Paleoenvironmental changes recorded within the fore-arc sediments indicate that the older basin filled up by the late Miocene. We inferred the volumes of the distinctive basins from the depth-conversion of seismic data, which suggest episodic uplifts and massive erosion of the Hidaka Mountains in the middle-late Miocene and the Plio-Pleistocene. Estimated sediment supply rates into the basins have a similar level for the both stages. Cause of an episodic uplift in the older stage is attributed to the delayed opening of the Japan Sea. The eastern Eurasian margin underwent N-S right-lateral faulting at 25 Ma as a result of rifting of the Kuril back-arc basin. Formation of the Japan Sea back-arc basin since the early Miocene (ca. 20 Ma) caused eastward motion of the western Hokkaido block and transpressive regime along the pre-existing N-S shear deformation zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号