首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
罗天宇  臧德彦 《测绘科学》2012,37(5):107-109
在VRS定位中,对影响虚拟站精度的对流层延迟仅是采取简单的基于参考站对流层延迟的几何距离内插模型,虽然此模型较简单,但是精度较差,不利于提高定位精度。因此,本文提出了一种考虑气象元素、纬度和高程对对流层的影响,结合数值气象学内插气象元素的方法,利用经典的对流层HOPFIELD模型以及MTT映射函数,估算出测站点的对流层延迟,通过数值分析,证明了此方法的可行性;特别是在低高度角的情况下,与传统方法相比,在精度及稳定性上有一定的提高。  相似文献   

2.
利用VLBI、GNSS等空间大地测量数据估计对流层延迟时,通常不考虑映射函数的误差,但这种处理策略最终会对估计结果造成不可忽略的影响。首先,根据多年的气象资料,分析了映射函数误差随高度角的变化特性,然后构建了映射函数误差模型,进而提出了一种顾及映射函数误差的对流层延迟两步估计法。试验表明,本文提出的方法可有效削弱斜路径延迟残差,并在一定程度上改善对流层湿延迟的估计精度。  相似文献   

3.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

4.
GPS定位中的对流层模型分析   总被引:1,自引:0,他引:1  
系统地分析对流层延迟特性在GPS导航中造成的定位误差,并主要介绍目前卫星定位领域主要应用的一些对流层折射修正模型。基于霍普尔德模型和萨斯塔莫宁模型,提出一种在缺少实测气象参数条件下,使用的简单对流层延迟修正模型。利用Matlab仿真软件对静态和动态接收机实测数据进行分析。结果表明,无气象参数的简单修正模型可以消除70%左右的对流层影响,有效地提高GPS的定位精度。  相似文献   

5.
对流层延迟是影响全球卫星导航系统(GNSS)测量精度的重要因素. 针对现有对流层延迟模型稳定性差,精度较低等问题,在无实测气象参数条件下,提出一种基于Keras平台的长短期记忆神经网络(LSTM)的对流层延迟预测模型. 选取全球均匀分布的8个测站,使用其2016年第90-131年积日共42 天的整点对流层延迟数据预测其第132-136年积日的整点数据. 以国际GNSS服务(IGS)中心提供的对流层产品为真值,分析比较LSTM模型和反向传播(BP)神经网络模型的预测效果. 研究表明,LSTM模型预测结果的均方根误差基本达到mm级,其平均绝对误差和平均绝对百分比误差均比BP模型低,LSTM模型在精度和稳定性上较BP模型均有明显提高;LSTM模型在中高纬区域的均方根误差(RMSE)均值达到7.82 mm,中高纬地区更适合使用该模型.   相似文献   

6.
基于GNSS基准站网的对流层延迟建模   总被引:1,自引:0,他引:1  
针对在卫星导航定位中,通常采用对流层模型进行,对流层延迟误差修正的现状,该文研究了一种基于GNSS基准站网的对流层延迟建模方法,并基于此方法利用日本地区GENET参考网约737个站5a的GNSS-ZTD序列建立了区域对流层模型ZTDM-JPN,并将ZTDM-JPN模型应用于GPS及北斗定位实验,分析了其在GPS及北斗定位中的实际应用性能。通过与国际上常用的对流层模型EGNOS、UNB3m作比较,结果表明,ZTDM-JPN模型的模拟精度较相同条件下的EGNOS与UNB3m模型分别提升约26%和21%,从而验证了该建模方法的可行性与优越性。  相似文献   

7.
对流层延迟是影响GPS定位精度的主要误差来源。随着精度要求的提高,经验模型已经不能满足精密定位的需要,而世界许多地区建立的连续运行参考站系统为建立区域对流层模型提供了一个很好的契机。本文分析了常用的对流层区域实时模型方法的不足,提出了基于球冠谐 (SCHA, Spherical Cap Harmonic Analysis)的区域精密对流层模型。与常用的四参数模型进行对比分析发现,SCHA模型在内符合精度上有显著提高(RMS值在5mm内),在外符合精度上比传统模型拟合效果提高了50%左右(RMS值在1cm内)。SCHA模型能更好的描述对流层的空间变化,适用于大区域对流层延迟实时建模。  相似文献   

8.
对流层延迟是卫星导航定位的主要误差源,GNSS广域增强需要高精度的对流层延迟产品进行误差修正。对流层延迟可通过GNSS进行实时估计,也可通过融合多源数据的数值气象预报模型获取。IGS发布的全球对流层天顶延迟产品由GNSS解算,其精度可达4mm,时间分辨率为5min,但其分布不均匀,在广袤的海洋区域无数据覆盖。GGOS Atmosphere基于ECMWF 40年再分析资料,可提供1979年以来时间分辨率为6h、空间分辨率为2.5°×2°的全球天顶对流层总延迟格网数据。本文通过2015年全球IGS测站的ZTD资料对GGOS的ZTD产品进行了评估,研究了GGOS Atmosphere对流层延迟产品与IGS发布ZTD资料之间的系统差,通过线性拟合估计出每个测站GGOS-ZTD与IGSZTD系统差系数(包括比例误差a和固定误差b),然后对比例误差a、固定误差b进行球谐展开,建立了两种ZTD数据源之间的系统差模型。选取IGS测站和陆态网测站,对附加系统偏差改正后的GGOSZTD产品对PPP的收敛速度的影响进行研究。本文研究结果表明:GGOS-ZTD与IGS-ZTD间存在系统偏差,其bias平均为-0.54cm;两者之间较差的RMS平均为1.31cm,说明GGOS-ZTD产品足以满足广大GNSS导航定位用户对对流层延迟改正的需要。将改正了系统差后的GGOS-ZTD产品用于ALBH、DEAR、ISPA测站、PALM测站、ADIS测站、YNMH测站、WUHN测站进行PPP试验,发现可明显提高定位收敛速度,尤其是在U方向上,收敛速度分别提高10.58%、31.68%、15.96%、43.89%、51.46%、14.69%、18.40%。  相似文献   

9.
受实测气象参数的限制,使用标准大气参数的传统对流层模型的精度并不高;使用参数估计法的精密对流层模型增加了观测方程的待估参数,影响收敛速度. 针对实测气象参数缺失的情况,提出一种融合对流层模型,使用两种非实测气象参数模型分别计算出平均海平面处和测站处的气象参数,再利用Saastamoinen模型经验公式求解天顶对流层延迟(ZTD). 利用RTKLIB软件进行精密单点定位(PPP)实验. 提出的融合对流层模型摆脱了实测气象参数的限制,解算结果表明:使用该模型时,在东、北、天方向的定位精度分别比Saastamoinen模型提高16 mm、1 mm、2.2 mm,比MOPS模型提高13.8 mm、0.7 mm、1.6 mm,比GPT/UNB3m+Sa模型提高2.9 mm、0.4 mm、0.7 mm,在天、北方向的定位精度接近参数估计模型,实现了PPP定位精度的提高.   相似文献   

10.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

11.
利用反距离加权内插法,对基准站解算的天顶对流层延迟(ZTD)建立了区域实时ZTD模型,评估了该模型内插流动站对流层延迟对PPP定位精度和收敛时间的影响。试验表明:与传统ZTD采用参数估计的处理方法对比,二者解算得到的PPP精度在水平方向上效果相当,但在垂直方向上,模型内插对流层解算的定位精度提高约为5 cm,且能显著提高PPP收敛速度。说明应用本方法建立非气象参数的区域天顶对流层延迟模型能有效加快PPP的收敛速度,且提高定位精度。  相似文献   

12.
为了减弱对流层延迟的影响,提高GNSS定位精度,探讨了在无气象参数的条件下,利用预测模型计算对流层延迟的可能性,并提出了一种经验对流层延迟预测模型,即基于季节性自回归移动平均模型(SARIMA)的对流层延迟预报方法。结合中国长春和上海两个地区的ZTD数据进行预测分析,预测结果表明:基于SARIMA的ZTD预报模型能够满足不同地区不同时段下的ZTD估计需求,是一种较高精度的ZTD预报方法。  相似文献   

13.
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.  相似文献   

14.
针对大型桥梁桥塔与基站高程差异较大,残余对流层延迟成为影响全球卫星导航系统(GNSS)监测成功率与精度的主要因素之一。该文基于随机过程理论,对桥梁监测GNSS残余对流层湿延迟进行参数估计,有效地提高了桥梁塔顶监测GNSS模糊度固定率。通过采用对流层经验模型改正对流层干延迟,将基准站和塔顶观测站对流层湿延迟组成相对对流层湿延迟,并联合位置参数和模糊度参数建立双差卡尔曼模型,最后利用最小二乘模糊度降低相关平差法(LAMBDA)对双差模糊度进行固定,并估计位置参数与相对对流层延迟参数。实验结果表明,该方法可以有效估计相对对流层延迟,有效提高GNSS模糊度固定率。  相似文献   

15.
通过全球导航卫星(GNSS)系统获取对流层天顶延迟对于气象和电波折射修正具有重要应用价值。利用自主研发的静态精密单点定位软件CRPPP,基于国际GNSS地球动力学服务局(IGS)发布的北斗系统(BDS)精密星历和精密钟差,给出了BDS估算天顶延迟结果。以IGS发布的全球定位系统(GPS)结果为参考对比,BDS估算天顶延迟结果平均偏差优于5mm,均方根误差(rms)优于2.3cm.同时,给出了西沙地区GPS与BDS估计结果,结果表明:利用北斗系统估计的对流层天顶延迟精度与GPS相当。  相似文献   

16.
一种GNSS网络RTK改进的综合误差内插方法   总被引:2,自引:1,他引:2  
在全球导航卫星系统(GNSS)网络RTK综合误差内插法(CBI)的基础上,提出了一种改进的综合误差内插方法(MCBI)。该方法把综合误差分为对流层模型改正、一阶电离层影响和除一阶电离层影响外的其他综合影响3个部分。实例证明了该方法不仅在精度上比综舍误差内插法要高,而且更利于流动站的应用。  相似文献   

17.
EGNOS对流层延迟改正模型及其精度分析   总被引:1,自引:0,他引:1  
对流层延迟是GPS定位中一个主要的误差源,目前处理对流层延迟的主要方法是通过模型法、差分法等;当基线的距离较短时,基线两端气象条件基本相同差分法可以很好地修正对流层延迟误差,当基线的距离很长时,由于基线两端的气象参数差别较大差分法不能很好地消除对流层误差,模型法却能很好地消除对流层误差.对EGNOS模型进行了详细的介绍...  相似文献   

18.
High accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9–12- and 5–6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1–2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.  相似文献   

19.
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.  相似文献   

20.
金双根  汪奇生  史奇奇 《测绘学报》2022,51(7):1239-1248
全球导航卫星系统(GNSS)已发展至多频多系统时代,特别以我国北斗卫星导航系统(BDS)为代表的四大全球导航卫星系统可全天时、全天候播发十几个频率的伪距、相位和多普勒等观测信息。多频多系统GNSS为用户提供更多的观测数据和组合选择,为精密定位、导航和授时(PNT)应用带来了新的机遇,如高精度位置服务、大地测量、空间天气和灾害监测等。但多频多系统GNSS观测为精密单点定位(PPP)组合模型和系统偏差及大气延迟估计等带来诸多问题和挑战。本文给出了单频到五频多系统GNSS精密单点定位(PPP)模型,估计和评估了单频到五频多系统GNSS PPP定位精度、接收机钟差、对流层延迟、卫星和接收机硬件延迟,以及频间偏差。给出了GNSS PPP最新应用进展,包括GNSS气象学、电离层模拟、时间频率传递、建筑物安全和地震监测及其应用。结果表明,多频多系统极大地提高了GNSS PPP参数估计的精度和可靠性,具有重要的应用价值。最后给出了多频多系统GNSS PPP应用前景与展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号