首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbonate mud that accumulated in the deep parts of a late Kimmeridgian carbonate ramp (Iberian Basin, NE Spain) was partly derived by resedimentation from shallow water production areas. High-frequency sea-level changes, probably driven by climatic changes in tune with precession and short-eccentricity cycles, affected carbonate production and the amount of exported sediment. Facies analysis and correlation of three outcrops located in middle and outer ramp settings allows a comparison of high-order sequences (bundles of beds and sets of bundles) across a ramp transect and an assessment of the carbonate factory. Analysis of the storm deposits found in middle ramp settings identifies deepening to shallowing high-frequency cycles based on the level of exported carbonate. In outer ramp areas, many of the bundles exhibit a thinning trend, indicating a progressive decrease of carbonate production and hence, carbonate export during periods of high-frequency sea-level rise. δ13Ccarb values show a gradual increase through the studied long-term transgressive interval ranging from 1·5‰ to 2·8‰. Within this long-term evolutionary trend, short-term δ13Ccarb fluctuations occur that correspond with some of the high-order cycles defined from sedimentary facies analysis. These short-term δ13Ccarb shifts are interpreted as shifts in carbonate export from shallow reef regions to the outer ramp. A consequence of this study is that variation in δ13Ccarb can be used for correlation in outer ramp successions, at least on a basin-wide scale.  相似文献   

2.
Nummulites, a particularly abundant and diverse genus of larger benthonic foraminifera, formed huge accumulations (banks) during the Eocene, which are often good hydrocarbon reservoirs, especially in North Africa. Despite their economical interest, these accumulations are not well‐understood and their origin is still under discussion. Reasons for this debate are the absence of living Nummulites accumulations and the high‐variability of facies, including the size, shape and extension of the banks, which reflect the array of processes controlling sediment production and accumulation. The nummulitic banks near Santa María de Buil, in the Ainsa Basin (South Pyrenean Foreland Basin) are composed of recurrent facies associations within mappable bed units bounded by physical surfaces. The depositional processes that produced the Nummulites deshayesi accumulations are interpreted considering the shape of the banks, the type of bounding surfaces, the distribution of sedimentary textures, Nummulites test shapes and the associated skeletal components within the banks. This integrative analysis indicates that nummulitic banks accumulated from mass flows, with very poor sediment sorting. Textural and compositional differences among banks suggest that globose Nummulites thrived in the shallower part of the mesophotic zone with abundant nummulithoclasts, whereas flat nummulitic forms thrived in deeper mesophotic, clay‐dominated settings. Interbedded with nummulitic banks, coral biostromes and coral mounds bearing Operculina, Discocyclina and Asterocyclina, represent in situ accumulation near the base of the photic zone. Internal waves (waves that propagate along the pycnocline) are thought to be the triggering mechanism for the density flows. Internal waves and induced bottom currents are sporadic but strong enough to bring sediments into suspension. In contrast to surface waves (both fair‐weather and storm), whose impact is strongest near the sea surface and decreases with bathymetry, the impact of internal waves is usually strongest in the mid‐shelf region and weaker in shallow water. This explains the compositional character of the nummulitic banks.  相似文献   

3.
Pockmarks and mud volcanoes from marine and lacustrine environments are thought to be the surface expression of focused fluid flow (gas and/or water). However, the control fluid flow exerts on the sediment dynamics and rates of activity of such features, especially the maintenance and growth of pockmarks, is not well understood. This study suggests that variable fluid flow is the driving process that has maintained two lacustrine pockmarks over thousands of years. In Lake Neuchâtel (western Switzerland), the currently active Chez‐le‐Bart Pockmark (diameter ca 160 m, depth ca 10 m) and the Treytel Pockmark (diameter ca 100 m, depth ca 4 m) indicate ‘quiescent’ fluid flow as well as past, ‘eruptive’, events of subsurface sediment mobilization. This study aims to test the hypothesis that phases of increased fluid flow through the pockmarks have led to the remobilization and spilling of sediment over the pockmark rims, and that different modes of activity phases are responsible for their maintenance and growth. So termed ‘subsurface sediment mobilization deposits’ are visible in seismic profiles and correlate to specific, sedimentary intervals in Kullenberg‐type long piston cores. In a detailed analysis, different modes of transport are recognized, which are attributed to high‐density flows that correspond to multiple pulses of activity. The pockmark morphology, seismic stratigraphy and core correlation with pre‐existing data reveals that the two pockmarks have been maintained throughout the Holocene and underwent several switches between ‘quiescent’ and ‘eruptive’ mode activity.  相似文献   

4.
Abstract

Biostratigraphical data using larger foraminifera and planktonic foraminifera permitted us to establish the correlation between shallow platform sediments rich in larger foraminifera (Montsec and Serres Marginals thrust sheets) and deeper ones containing planktonic foraminifera (Boixols thrust sheet).

Consequently, the Santa Fe limestones containing Ovalveolina-Praealveolinaassemblage represent the Cenomanian. Early Turonian ( ‘IT~ archaeocretacea and P. helvetica zones) exist in both, Montsec and Boixols thrust sheets and it is constituted by Pithonella limestones. Late Turonian (M. schneegansi zone) is only present in Boixols thrust sheet (Reguard Fm.), the Montsec thrust sheet having an erosive hiatus.

Late Coniacian-Early Santonian (D. Concavata zone) is represented in the Montsec thrust sheet (Cova Limestones) and in the eastern part of the Boixols thrust sheet (St. Corneli Fm.) by two differents facies giving two different microfaunal assemblages; the firts one, characterized by Ophtalmidiidae s.l indicate a restricted lagoonal environment while the second one, characterized by diverses species of complex agglutinated, Fabulariidae, Meandropsinidae and Rotaliidae, represents an open shallow platform. In the Boixols thrust sheet (Anseroles Fm.) dominate the planktonic foraminifera and small benthic.

In the late Santonian (D. asyrnetrica zone) the sea reached as far as Serres Marginales thrust sheet where sediments (Tragó de Noguera unit) are terrigenous and deposited in a very shallow platform. In the Montsec thrust sheet (Montsec marls) the larger foraminifera indicate a platform deeper than that of the Serres Marginals thrust sheet. In the Boixols thrust sheet the sediments are deposited in an outer platform (Herbasavina Fm.) or turbiditic basin (Mascarell Mb.).

During Campanian times the transgresion reaches the maximum. In the Serres Marginals sediments are deposited in a restricted shallow environment rich in Meandropsinidae (Serres Limestones). In the Montsec thrust sheet they are deposited in a platform with patch reefs and shoals (Terradets limestones) and in the Boixols one in an outer platform, talus and/or basin.

During Early Maastrichtian times (C. falsostuarti zone) terrigenous materials arrived in the basin, the rate of sedimentation increased outstripping the subsidence rate and the retreat of the sea to the north. Late Maastrichtian (C. gansseri zone) is only present in the Boixols thrust sheet.  相似文献   

5.
Turbidity currents, initiated from spring runoffs of an influent river, were observed in the upper region of a reservoir in Hokkaido, Japan, by measuring water temperature, velocity and suspended-sediment concentration. Their profiles offer some physical parameters for the sedimentary conditions, assuming the turbidity currents to be quasi-uniform. The bottom sediment deposited by the turbidity currents was then collected by a portable core sampler. The bottom sediment consists of more than 90% silt and clay, and thus offers a hydraulically smooth bed for shear flow; a plane bed as a bed configuration was formed on the reservoir bed, probably because of the low shear velocity and small grain size of sediment. Using a graphic method with log-normal probability paper, the bottom sediment is divided into several overlapping log-normal subpopulations. Grain-size analysis indicates that the bottom sediment may be regarded as cohesionless; criteria for ‘complete deposition’ of transported grains can then be incorporated into the ‘extended Shields diagram’ giving the minimum shear stress to erode bottom sediment. Applying the new diagram to the grain size distribution of the bottom sediment, it is suggested that each of the log-normal subpopulations was deposited in each of four different ‘modes of deposition’, i.e. ‘traction’, ‘saltation (or intermittent suspension)’, ‘suspension’ and ‘suspension under equilibrium’. The last mode may be observed under a sedimentary condition where upward flux of suspended sediment by eddy diffusion is almost equal to its depositional flux due to gravity. The mean and critical grain sizes for bottom sediment and each of the corresponding subpopulations decrease consistently with an increase of Ψ=Fd2 log10Re (Fd is the densimetric Froude number and Re is the flow Reynolds number). Ψ correlates inversely with shear velocity, which bears a linear relationship to mean velocity. These results lead to the conclusion that relatively fine suspended sediment is deposited as a result of decreasing bottom friction with a relative decrease of turbulent energy.  相似文献   

6.
Foraminifera can be used to determine the source(s) of carbonate sediment and the directions of sediment transport in shallow, coastal lagoons such as Frank Sound on the south-central coast of Grand Cayman. These determinations, based on the distribution of foraminiferal assemblages and ‘tracer species’ (numerically abundant species that live in known physiographic units and/or ecological conditions), show that the lagoonal sediments are a mixture of grains that originated in the lagoon and forereef. The variable proportions of these foraminifera throughout the lagoon reflects the dynamic processes that control lagoonal sedimentation. Amphistegina gibbosa, Discorbis rosea, and Asterigerina carinata lived in the forereef environment. The fact that these ‘tracer species’ are found throughout Frank Sound and in the beach sands, shows that they were transported across the reef crest and the lagoon. Abrasion-resistant Archaias angulatus, a‘tracer species’ indicative of a lagoonal setting, forms up to 50% of foraminiferal assemblages found in the lagoonal sediments. Preferential winnowing of small tests from these populations indicates sorting under high energy conditions. The vertical distribution of the forereef and lagoonal foraminifera in the sediment blanket that covers the floor of Frank Sound indicates that these processes are temporally persistent. Transportation of forereef foraminifera into and around the lagoon and sorting of the lagoonal foraminifera cannot take place under ‘normal’ conditions when the tranquil lagoon is characterized by weak currents. Storms and/or hurricanes, however, generate short-lived high-energy events that can move and sort the sediment and foraminifera. At the height of a storm, water and sediment are moved over the reef and then piled and held onshore by the onshore winds and the constant flow of water over the reef and across the lagoon. These currents can mix some of the lagoonal and forereef sediments. As a storm wanes, however, the ‘piled water’ flows offshore via strong rip currents that pass into the ocean through the channels which transect the reef. These currents winnow and/or strip sediment from the lagoon and may transport lagoonal sediments into the forereef area. As a result, residual lagoonal sediment is commonly characterized by larger and abrasion-resistant foraminifera.  相似文献   

7.
Megalospheric form of a striate Nummulites, provisionally identified here as Nummulites sp. aff. chavannesi de la Harpe, is documented from the Early Oligocene rocks of SW Kutch, Gujarat. This striate Nummulites occurs in association with N. fichteli-clipeus Group, N. cf. fichteli, Heterostegina, Operculina and Gypsina. High abundance of microspheric tests of reticulate Nummulites and virtual absence of microspheric tests of striate Nummulites reflect contrasting success of growth and sexual reproduction of the two groups of sympatric Nummulites.  相似文献   

8.
The North West Shelf is an ocean‐facing carbonate ramp that lies in a warm‐water setting adjacent to an arid hinterland of moderate to low relief. The sea floor is strongly affected by cyclonic storms, long‐period swells and large internal tides, resulting in preferentially accumulating coarse‐grained sediments. Circulation is dominated by the south‐flowing, low‐salinity Leeuwin Current, upwelling associated with the Indian Ocean Gyre, seaward‐flowing saline bottom waters generated by seasonal evaporation, and flashy fluvial discharge. Sediments are palimpsest, a variable mixture of relict, stranded and Holocene grains. Relict intraclasts, both skeletal and lithic, interpreted as having formed during sea‐level highstands of Marine Isotope Stages (MIS) 3 and 4, are now localized to the mid‐ramp. The most conspicuous stranded particles are ooids and peloids, which 14C dating shows formed at 15·4–12·7 Ka, in somewhat saline waters during initial stages of post‐Last Glacial Maximum (LGM) sea‐level rise. It appears that initiation of Leeuwin Current flow with its relatively less saline, but oceanic waters arrested ooid formation such that subsequent benthic Holocene sediment is principally biofragmental, with sedimentation localized to the inner ramp and a ridge of planktic foraminifera offshore. Inner‐ramp deposits are a mixture of heterozoan and photozoan elements. Depositional facies reflect episodic environmental perturbation by riverine‐derived sediments and nutrients, resulting in a mixed habitat of oligotrophic (coral reefs and large benthic foraminifera) and mesotrophic (macroalgae and bryozoans) indicators. Holocene mid‐ramp sediment is heterozoan in character, but sparse, most probably because of the periodic seaward flow of saline bottom waters generated by coastal evaporation. Holocene outer‐ramp sediment is mainly pelagic, veneering shallow‐water sediments of Marine Isotope Stage 2, including LGM deposits. Phosphate accumulations at ≈ 200 m water depth suggest periodic upwelling or Fe‐redox pumping, whereas enhanced near‐surface productivity, probably associated with the interaction between the Leeuwin Current and Indian Ocean surface water, results in a linear ridge of pelagic sediment at ≈ 140 m water depth. This ramp depositional system in an arid climate has important applications for the geological record: inner‐ramp sediments can contain important heterozoan elements, mid‐ramp sediments with bedforms created by internal tides can form in water depths exceeding 50 m, saline outflow can arrest or dramatically slow mid‐ramp sedimentation mimicking maximum flooding intervals, and outer‐ramp planktic productivity can generate locally important fine‐grained carbonate sediment bodies. Changing oceanography during sea‐level rise can profoundly affect sediment composition, sedimentation rate and packaging.  相似文献   

9.
The Bowland Basin (northern England) contains a series of carbonates and terrigenous mudstones deposited during the Ivorian to early Brigantian. Two regional depositional environments are indicated by facies and facies associations. Wackestone/packstone and calcarenite facies indicate deposition in a carbonate ramp environment, while lime mudstone/wackestone, calcarenite and limestone breccia/conglomerate facies, often extensively slumped, represent a carbonate slope environment. Stratigraphic relations suggest that the depositional environment evolved from a ramp into a slope through the Dinantian. Two main sediment sources are indicated by the sequence; an extra-basinal terrigenous mud source and a supply of carbonate from the margins of the basin. Deposition from suspension and from sediment gravity flows, in situ production and remobilization of sediment during sedimentary sliding were important processes operating within the basin. Periods of enhanced tectonic activity in the late Chadian to early Arundian and late Asbian to early Brigantian are indicated by basin-wide horizons of sedimentary slide and mass flow deposits. Both intervals were marked by a decline in carbonate production resulting from inundation and uplift/emergence. The first of these intervals separates deposition on a seafloor with gentle topography (carbonate ramp) from a situation where major lateral thickness and facies variations were present and deposition took place in a carbonate slope environment. The second interval marks the end of major carbonate deposition within the Bowland Basin and the onset of regional terrigenous sedimentation.  相似文献   

10.
ABSTRACT Quaternary carbonates in SE Sicily were deposited in seamount and short ramp settings during glacio‐eustatically driven highstand conditions. They provide an excellent opportunity to investigate the depositional and erosional aspects of cool‐water carbonate sedimentation in a microtidal marine water body. The derived ramp facies model differs significantly from modern‐day, open‐ocean ramp scenarios in projected facies depth ranges and in the preservation of inshore facies. A sequence stratigraphic study of the carbonates has confirmed many established aspects of carbonate sedimentation (e.g. production usually only occurred during highstands). It has also revealed several new features peculiar to water bodies with little tidal influence, including ‘catch‐up’ surfaces taking the place of transgressive facies, second‐order sequence boundary events being most important as triggers for initiating resedimentation and a virtual absence of sediment shedding to the basin during the terminal lowstand. Production in the carbonate factory lasted for about 0·5 Myr. Despite this, carbonate production was considerable and included both bioconstructional and bioclastic‐dominated facies and the production of abundant lime muds. A model for eustatically controlled cool‐water carbonate production and resedimentation in microtidal marine water bodies is presented. This is considered to be more applicable to Neogene and Quaternary strata in the Mediterranean region than are current open‐ocean models.  相似文献   

11.
Saddle-shaped reticulate Nummulites from the Early Oligocene rocks of Khari area, SW Kutch, India is reported here for the first time. Unusual shape of this Nummulites is due to the curved nature of the coiling plane, indicating space constrained postembryonic test growth. With regular development of chambers, septa and septal filaments, the saddle-shaped Nummulites constitutes the third morphotype of N. cf. fichteli Michelotti form A. Other morphotypes of the species reported earlier include inflated lenticular and conical tests. Multiple morphotypes of N. cf. fichteli form A indicates varied test growth in response to substrate conditions. Morphological variability exhibited by N. cf. fichteli form A from Kutch and some Early Oligocene reticulate Nummulites from the Far East are comparable. This faunal suite is morphologically distinct from the contemporary reticulate Nummulites of the European localities.  相似文献   

12.
Modern cemented intervals (beachrock, firmgrounds to hardgrounds and concretionary layers) form in the lagoon and intertidal sabkha of Abu Dhabi. Seafloor lithification actively occurs in open, current-swept channels in low-lying areas between ooid shoals, in the intertidal zone of the middle lagoon, some centimetres beneath the inner lagoonal seafloor (i.e. within the sediment column) and at the sediment surface the intertidal sabkha. The concept of ‘concretionary sub-hardgrounds’, i.e. laminar cementation of sediments formed within the sediment column beneath the shallow redox boundary, is introduced and discussed. Based on calibrated radiocarbon ages, seafloor lithification commenced during the Middle to Late Holocene (ca 9000 cal yr bp ), and proceeds to the present-day. Lithification occurs in the context of the actualistic relative sea-level rise shifting the coastline landward across the extremely low-angle carbonate ramp. The cemented intervals are interpreted as parasequence boundaries in the sense of ‘marine flooding surfaces’, but in most cases the sedimentary cover overlying the transgressive surface has not yet been deposited. Aragonite, (micritic) calcite and, less commonly, gypsum cements lithify the firmground/hardground intervals. Cements are described and placed into context with their depositional and marine diagenetic environments and characterized by means of scanning electron microscope petrography, cathodoluminescence microscopy and Raman spectroscopy. The morphology of aragonitic cements changes from needle-shaped forms in lithified decapod burrows of the outer lagoon ooidal shoals to complex columnar, lath and platy crystals in the inner lagoon. Precipitation experiments provide first tentative evidence for the parameters that induce changes in aragonite cement morphology. Data shown here shed light on ancient, formerly aragonite-cemented seafloors, now altered to diagenetic calcites, but also document the complexity of highly dynamic near coastal depositional environments.  相似文献   

13.
Two large (200 to 300 km), near‐continuous outcrop transects and extensive well‐log data (ca 2800 wells) allow analysis of sedimentological characteristics and stratigraphic architecture across a large area (ca 60 000 km2) of the latest Santonian to middle Campanian shelf along the western margin of the Western Interior Seaway in eastern Utah and western Colorado, USA. Genetically linked depositional systems are mapped at high chronostratigraphic resolution (ca 0·1 to 0·5 Ma) within their sequence stratigraphic context. In the lower part of the studied interval, sediment was dispersed via wave‐dominated deltaic systems with a ‘compound clinoform’ geomorphology in which an inner, wave‐dominated shoreface clinoform was separated by a muddy subaqueous topset from an outer clinoform containing sand‐poor, gravity‐flow deposits. These strata are characterized by relatively steep, net‐regressive shoreline trajectories (>0·1°) with concave‐landward geometries, narrow nearshore belts of storm‐reworked sandstones (2 to 22 km), wide offshore mudstone belts (>250 km) and relatively high sediment accumulation rates (ca 0·27 mm year?1). The middle and upper parts of the studied interval also contain wave‐dominated shorefaces, but coeval offshore mudstones enclose abundant ‘isolated’ tide‐influenced sandstones that were transported sub‐parallel to the regional palaeoshoreline by basinal hydrodynamic (tidal?) circulation. These strata are characterized by relatively shallow, net‐regressive shoreline trajectories (<0·1°) with straight to concave‐seaward geometries, wide nearshore belts of storm‐reworked sandstones (19 to 70 km), offshore mudstone belts of variable width (130 to >190 km) and relatively low sediment accumulation rates (ca ≤0·11 mm year?1). The change in shelfal sediment dispersal and stratigraphic architecture, from: (i) ‘compound clinoform’ deltas characterized by across‐shelf sediment transport; to (ii) wave‐dominated shorelines with ‘isolated’ tide‐influenced sandbodies characterized by along‐shelf sediment transport, is interpreted as reflecting increased interaction with the hydrodynamic regime in the seaway as successive shelfal depositional systems advanced out of a sheltered embayment (‘Utah Bight’). This advance was driven by a decreasing tectonic subsidence rate, which also suppressed autogenic controls on stratigraphic architecture.  相似文献   

14.
Dolomite cement is a significant and widespread component of Phanerozoic sucrosic dolomites. Cements in dolomites that were never deeply buried are limpid, have planar faces (non‐saddle forms), often distinct zonation in cathodoluminescence and form syntaxial overgrowths on crystals facing pores. Five samples of sucrosic dolomites, interpreted as having had mostly lime‐mudstone or wackestone precursors in four carbonate aquifers, provide insights into the abundance of planar cements in sucrosic dolomites. Such cement comprises 11% to 45% (32% mean) of peritidal to sub‐tidal dolomites on an outcrop in the Edwards aquifer (Early Cretaceous) of central Texas; 19% to 33% (25% mean) of ramp dolomites in the Hawthorn Group (Oligo‐Miocene) and 50% to 70% in shelf dolomites of the Avon Park Formation (Eocene) in the Upper Floridan aquifer of sub‐surface peninsular Florida; 18% to 45% (32+% mean) of sub‐tidal shelf dolomites in quarry sections of the Burlington‐Keokuk Formation (Early Mississippian) in south‐eastern Iowa; and 18% to 76% (50% mean) in shallow cores and outcrops of outer‐shelf dolomites from the Gambier Limestone (Oligo‐Miocene) of South Australia. Backstripping the cement phases revealed by cathodoluminescence colour photomicrographs documents the effects of cements on textural coarsening, pore‐space reduction, induration and general ‘maturation’ of these dolomites. Most pre‐Holocene dolomites are multiphase crystalline rocks composed of: (i) seed crystals or ‘cores’; (ii) crystal cortices that concentrically enlarged the cores; and (iii) free‐space, syntaxial precipitates of limpid cement around the crystals. Remaining CaCO3 grains and micrite can be replaced by dolomite, but typically they are dissolved between stages (ii) and (iii), creating systems of intercrystal and mouldic pores typical of sucrosic dolomites. Networks of cement overgrowths, aided by water‐filled pore systems under hydrostatic to lithostatic pressure, are judged to slow or prevent compaction in sucrosic dolomites. It can be argued that cortex growth involves both replacement of CaCO3 particles and microcementation of their interparticle pores. This interpretation, and the abundance of cements in so many dolomites, would obviate the controversy over the volumetrics of ‘replacement dolomitization’. Limpid, planar and syntaxial dolomite cements of early diagenetic origin are interpreted to have precipitated from clear pore waters, at low temperatures (<30 to 35 °C) and shallow burial depths (<100 m), in water‐saturated networks of dolomite ‘silt’ and ‘sand’. Cements in many dolomites in island and continental–aquifer systems appear to result from event‐driven processes related to sea‐level highstands. Cementation events can follow ‘replacement dolomitization’ events by time intervals ranging from geologically ‘instantaneous’ to tens of million years.  相似文献   

15.
The northern segment of the Peruvian Andes is affected by a twofold climate with measurable implications on landscapes and landscape dynamics. During ‘normal’ or ‘neutral’ years easterly winds bring rain from the Atlantic and the Amazon Basin to the Sierras, which results in a seasonal climate with rather low-intensity precipitations. In contrast, during the large-scale warm phase of the ENSO cycle, El Niños transfer moisture from the Pacific to the Peruvian coast by westerly winds and result in high-intensity precipitation. We investigate the effects of this twofold climate for the case of the Piura drainage basin at ca. 5°S latitude (northern Peru). In the headwaters that have been under the influence of the easterlies, the landscape is mantled by a thick regolith cover and dissected by a network of debris flow channels that are mostly covered by a thick layer of unconsolidated sediment. This implies that in the headwaters of the Piura River sediment discharge has been limited by the transport capacity of the sediment transfer system. In the lower segment that has been affected by high-intensity rainfall in relation to the westerlies (El Niños), the hillslopes are dissected by debris flow channels that expose the bedrock on the channel floor, implying a supply-limited sediment discharge. Interestingly, measurements at the Piura gauging station near the coast reveal that, during the last decades, sediment was transferred to the lower reaches only in response to the 1982–1983 and 1997–1998 El Niño periods. For the latter period, synthetic aperture radar (SAR) intensity images show that the locations of substantial erosion are mainly located in areas that were affected by higher-than-average precipitation rates. Most important, these locations are coupled with the network of debris flow channels. This implies that the seasonal easterlies are responsible for the production of sediment through weathering in the headwaters, and the highly episodic El Niños result in export of sediment through channelized sediment transport down to the coastal segment. Both systems overlap showing a partially coupled sediment production–delivery system.  相似文献   

16.
《Sedimentary Geology》2001,139(3-4):319-340
Facies analysis of the upper Kimmeridgian rocks in the outcrops located near Ricla (Zaragoza province, northeast Spain) and the integration of the resultant data in a broader context (the northern part of the Iberian Basin), has produced two general models showing the facies distribution and the processes that controlled the sedimentation in the Kimmeridgian carbonate ramp. Using these two models the transition from shallow to relatively deep environments of the carbonate ramp is examined in detail. Model 1 corresponds to the development of a mixed carbonate-siliciclastic ramp during a slow rise and stillstand of sea level (Sequence 1-HST), whereas Model 2 represents the growth of a pure carbonate ramp during a rapid rise of sea level (Sequence 2-TST).Carbonate production was higher in the shallow ramp domains (coral reefs and oolitic shoals in Model 1 and reefs in Model 2) than in deeper domains, where there is no indication of significant pelagic or benthic production. The activity of unidirectional return flows induced by winter storms and hurricanes, played an important role in the redistribution of the sediment across the ramp, generating different coarse-grained deposits. In the inner and mid-ramp settings dunes, lower scale bedforms and tempestites occur in Model 1, and storm lobes, bars and tempestites in Model 2. Moreover, a significant bulk of the carbonate mud produced in shallow areas would eventually be resedimented in the outer ramp as suspended load in the density currents. Stillstand of sea level in Model 1 involved a rapid progradation of the inner and proximal mid-ramp carbonate and siliciclastic facies. The rapid relative sea level rise of Model 2 is determined by the dominance of the carbonate facies and by the presence of aggradational geometries in the transitional area between shallow and deep-ramp domains. The presence of relatively thick sections in the outer-ramp settings (instead of condensed sections, as observed in Model 1) during times of sea level rise (Model 2) can mainly be explained by the increase of the shallow production in the reef dominated areas.  相似文献   

17.
Oceanic islands – such as the Azores in the mid‐North Atlantic – are periodically exposed to large storms that often remobilize and transport marine sediments along coastlines, and into deeper environments. Such disruptive events create deposits – denominated tempestites – whose characteristics reflect the highly dynamic environment in which they were formed. Tempestites from oceanic islands, however, are seldom described in the literature and little is known about storm‐related sediment dynamics affecting oceanic island shelves. Therefore, the geological record of tempestite deposits at oceanic islands can provide invaluable information on the processes of sediment remobilization, transport and deposition taking place on insular shelves during and after major storms. In Santa Maria Island (Azores), a sequence of Neogene tempestite deposits was incorporated in the island edifice by the ongoing volcanic activity (thus preserved) and later exposed through uplift and erosion. Because it was overlain by a contemporary coastal lava delta, the water depth at the time of deposition could be inferred, constituting an excellent case‐study to gain insight on the still enigmatic processes of insular shelf deposition. Sedimentological, palaeontological, petrographic and palaeo‐water depth information allowed the reconstruction of the depositional environment of these sediments. The sequence typifies the characteristics of a tempestite (or successive tempestites) formed at ca 50 m depth, in a steep, energetic open insular shelf, and with evidence for massive sediment remobilization from the nearshore to the middle or outer shelf. The authors claim that cross‐shelf transport induced by storm events is the main process of sediment deposition acting on steep and narrow shelves subjected to high‐energetic environments, such as the insular shelves of open‐sea volcanic islands.  相似文献   

18.
Delta fronts are often characterized by high rates of sediment supply that result in unstable slopes and a wide variety of soft‐sediment deformation, including the formation of overpressured and mobile muds that may flow plastically during early burial, potentially forming mud diapirs. The coastal cliffs of County Clare, western Ireland, expose Pennsylvanian (Namurian) delta‐front deposits of the Shannon Basin at large scale and in three dimensions. These deposits include decametre‐scale, internally chaotic mudstone masses that clearly impact the surrounding sedimentary strata. Evidence indicates that these were true mud (unlithified sediment) diapirs that pierced overlying strata. This study documents a well‐exposed ca 20 m tall mud diapir and its impact on the surrounding mouth‐bar deposits of the Tullig Cyclothem. A synsedimentary fault and associated rollover dome, evident from stratal thicknesses and the dip of the beds, define one edge of the diapir. These features are interpreted as recording the reactive rise of the mud diapir in response to extensional faulting along its margin. Above the diapir, heterolithic sandstones and siltstones contain evidence for the creation of localized accommodation, suggesting synsedimentary filling, tilting and erosion of a shallow sag basin accommodated by the progressive collapse of the diapir. Two other diapirs are investigated using three‐dimensional models built from ‘structure from motion’ drone imagery. Both diapirs are interpreted to have grown predominantly through passive rise (downbuilding). Stratal relationships for all three diapirs indicate that they were uncompacted and fluid‐rich mud beds that became mobilized through soft‐sediment deformation during early burial (i.e. <50 m, likely <10 m depth). Each diapir locally controlled the stratigraphic architecture in the shallow subsurface and potentially influenced local palaeocurrents on the delta. The mud diapirs studied herein are distinct from deeper ‘shale diapirs’ that have been inferred from seismic sections worldwide, now largely disputed.  相似文献   

19.
Lake Estanya is a small (19 ha), freshwater to brackish, monomictic lake formed by the coalescence of two karstic sinkholes with maximum water depths of 12 and 20 m, located in the Pre‐Pyrenean Ranges (North‐eastern Spain). The lake is hydrologically closed and the water balance is controlled mostly by groundwater input and evaporation. Three main modern depositional sub‐environments can be recognized as: (i) a carbonate‐producing ‘littoral platform’; (ii) a steep ‘talus’ dominated by reworking of littoral sediments and mass‐wasting processes; and (iii) an ‘offshore, distal area’, seasonally affected by anoxia with fine‐grained, clastic sediment deposition. A seismic survey identified up to 15 m thick sedimentary infill comprising: (i) a ‘basal unit’, seismically transparent and restricted to the depocentres of both sub‐basins; (ii) an ‘intermediate unit’ characterized by continuous high‐amplitude reflections; and (iii) an ‘upper unit’ with strong parallel reflectors. Several mass‐wasting deposits occur in both sub‐basins. Five sediment cores were analysed using sedimentological, microscopic, geochemical and physical techniques. The chronological model for the sediment sequence is based on 17 accelerator mass spectrometry 14C dates. Five depositional environments were characterized by their respective sedimentary facies associations. The depositional history of Lake Estanya during the last ca 21 kyr comprises five stages: (i) a brackish, shallow, calcite‐producing lake during full glacial times (21 to 17·3 kyr bp ); (ii) a saline, permanent, relatively deep lake during the late glacial (17·3 to 11·6 kyr bp ); (iii) an ephemeral, saline lake and saline mudflat complex during the transition to the Holocene (11·6 to 9·4 kyr bp ); (iv) a saline lake with gypsum‐rich, laminated facies and abundant microbial mats punctuated by periods of more frequent flooding episodes and clastic‐dominated deposition during the Holocene (9·4 to 0·8 kyr bp ); and (v) a deep, freshwater to brackish lake with high clastic input during the last 800 years. Climate‐driven hydrological fluctuations are the main internal control in the evolution of the lake during the last 21 kyr, affecting water salinity, lake‐level changes and water stratification. However, external factors, such as karstic processes, clastic input and the occurrence of mass‐flows, are also significant. The facies model defined for Lake Estanya is an essential tool for deciphering the main factors influencing lake deposition and to evaluate the most suitable proxies for lake level, climate and environmental reconstructions, and it is applicable to modern karstic lakes and to ancient lacustrine formations.  相似文献   

20.
Sediment in tectonically active, topographically restricted settings of the western Hellenic Arc, eastern Mediterranean, consists primarily of clayey silt and silty clay. Failure of metastable sediment temporarily stored on relatively steep slopes is triggered by earthquake tremors and eustatic oscillations. Redeposition of these materials by gravitative transport has resulted in markedly different lithofacies from site to site. Most piston cores include three Late Quaternary stratigraphic units that can be correlated with sections in other parts of the eastern Mediterranean; numerous radiocarbon-age determinations enhance the correlation. Seven fine-grained sediment types are identified in cores from eight distinct depositional environments. Some muds are closely related to specific environments (slump and debris flow deposits on slope and high-relief environments), or to time (well laminated mud during the latest Pleistocene-mid-Holocene), or to both (uniform and faintly laminated muds restricted to trench basins). Turbiditic and hemipelagic muds are common throughout the study area. Mud distribution patterns correlate closely with calculated sedimentation rates. We propose two depositional models for these sediments. The first emphasizes downslope transformations resulting in progressively reduced flow concentration during transport: from slump and debris flow–>turbidity current–>low density turbidity current or turbid layer mechanisms. The distal end-member deposits settling from low concentration flows are thick, rapidly emplaced, fine-grained uniform muds closely associated with faintly laminated muds. These were ponded in flat trench basin-plains. Planktonic and terrigenous fractions in the turbiditic, finely laminated and uniform muds record mixing of materials of gravitative and suspension origin during redeposition. This sequence prevails under conditions of minimal stratification of water masses, as characterized by the present Mediterranean. In the second model developed for conditions of well-developed water mass stratification, well laminated rather than uniform mud prevails as the end product of low concentration flows. These very finely laminated and graded muds record particle-by-particle settling from detached turbid layers concentrated along density interfaces; they include material from turbid layers complemented by the normal ‘rain’ of pelagic material. Stratification barriers resulted in region-wide distribution of such deposits, in both slope and trench environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号