首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
<正>位于杨子地台西南缘的桂西分布着大面积的晚古生代基性侵入岩(辉绿岩和玄武岩)。众多研究表明,这些基性侵入岩介于华南、印支和思茅地块三者交界分布,呈层状或似层状小岩体产出,与峨眉山地幔柱有关。桂西基性岩的分布虽然距离峨眉山大陆溢流玄武岩主体比较远,但是它位于峨眉山大火成岩省(ELIP)东南部,表明二叠纪峨眉山大火成岩省岩浆活动已经影响到了桂西地区,故桂西地区基性岩可能是二叠纪峨眉山大火成岩省外带外侧东南端的产物(吴浩若等,1997;王忠诚等,1997;廖帅等,2013)。  相似文献   

2.
峨眉火成岩省位于扬子地块西部,为中二叠世末地幔柱活动产物。迄今为止,峨眉火成岩省已发现超大型V-Ti磁铁矿矿床4处,大中型岩浆硫化物型Ni-Cu-(PGE)矿床近10处。这些矿床的含矿镁铁-超镁铁岩体为260Ma±,与峨眉山玄武岩为同一地幔柱的产物。系统归纳和分析上述两类含矿镁铁-超镁铁岩体在空间分布、岩体规模、岩石组合和造岩矿物组成等方面存在明显的差异:可以分为内带和外带,内带以巨厚的峨眉山玄武岩、大型层状岩体和众多小型镁铁-超镁铁岩体、低Ti玄武岩、碱性岩体和丰富的成矿作用为标志。外带则玄武岩厚度降低,以高-Ti玄武岩为主,很少有侵入岩体。在对这两类岩浆矿床的分布及其与低Ti和高Ti玄武岩地质和地球化学联系的归纳和分析基础上,结合对杨柳坪Ni-Cu-(PGE)硫化物矿床成矿过程与峨眉山玄武岩岩浆起源和演化相互关系的研究结果,认为峨眉山火成岩省这些不同类型的矿床是地幔柱动力学过程不同阶段的产物。V-Ti磁铁矿矿床的形成于高Ti玄武岩浆有关,主要受控于岩浆的分离结晶作用;而Ni-Cu-(PGE)硫化物矿床成矿主要取决于3个因素:高程度的部分熔融,下地壳同化混染和分离结晶。Ni-Cu-(PGE)硫化物矿床是地幔柱活动早期阶段的产物,而V-Ti磁铁矿矿床则形成则晚于岩浆硫化物矿床。  相似文献   

3.
中国东部中生代大规模岩浆活动与长英质大火成岩省问题   总被引:1,自引:0,他引:1  
笔者认为,中国东部中生代大规模岩浆活动很难用太平洋板块的俯冲来解释,中国东部中生代大规模岩浆活动可能相当于几个不同时期发育的长英质大火成岩省,与中生代东亚超级地幔柱的活动有关.世界上存在两类大火成岩省,一类以镁铁质岩为主(M-LIP);另一类以长英质岩为主(F-LIP).中国也存在上述两类大火成岩省,二叠纪的峨眉山玄武岩属于前者,中国东部中生代大规模的岩浆活动属于后者.二者可能均与地幔柱的活动有关,不同在于镁铁质大火成岩省的地幔柱上升停滞在岩石圈底部,在那里发生部分熔融形成大规模玄武岩喷发;而与长英质大火成岩省有关的地幔柱可抵达下地壳底部直接烘烤和加热下地壳,形成长英质成分的岩浆岩.学术界通常认为中国东部中生代大规模岩浆活动与太平洋板块向西俯冲导致的软流圈地幔上升有关,本文却认为它可能与来自下地幔的地幔柱有关.大火成岩省矿产丰富,与镁铁质大火成岩省有关的矿产有铜、镍、铬、铂、钯等,与长英质大火成岩省有关的矿产有金、铜、钨、锡、钼、铋、锑、铀等.  相似文献   

4.
本文简要总结了国家重点基础研究发展计划项目《二叠纪地幔柱构造与地表系统演变》的主要研究进展:(1)峨眉山大火成岩省形成于~259 Ma,持续时间小于1 Ma,是地幔柱头熔融的产物;塔里木大火成岩省为多阶段喷发(~300,~290,280 Ma),持续时间超过20 Ma,是孕育地幔柱活动的产物。(2)利用综合地球物理方法发现峨眉山大火成岩省内带上下地壳界面"消失"、下地壳增厚且具高波速特征、岩石圈地幔减薄,是地幔柱熔融产物在地壳不同深度底侵和内侵的结果。(3)完善了大火成岩省岩浆矿床的形成机理,构建了地幔柱成矿系统的基本框架,提出地幔柱结构、岩浆源区特征、结晶分异过程、硫化物饱和、地壳混染和岩浆侵位过程等是地幔柱成矿的关键控制因素。(4)从相对和绝对时间角度确证了西伯利亚和峨眉山大火成岩省分别对应于二叠纪末(PTB)和瓜德鲁普统-乐平统界线(GLB)生物灭绝事件;重建了华南二叠-三叠纪海水温度和p H值的演变历史,使甄别二叠纪末生物大灭绝的直接诱因成为可能。  相似文献   

5.
峨眉山大火成岩省岩浆型Cu-Ni-PGE矿化岩体广泛分布,构成峨眉山地幔柱成矿系统中一个非常重要的成矿系列。本文剖析了峨眉山大火成岩省该类矿床的分布及部分典型矿床的地质地球化学特征和矿化特征,揭示了成矿岩体统一的地幔柱成因,阐述了Cu-Ni-PGE成矿作用与峨眉山地幔柱岩浆活动体系的关系,探讨了由于岩浆演化过程及硫化物熔离富集过程的差异所导致的矿化类型变异。指出Cu-Ni-PGE矿床成矿岩体原始岩浆为地幔柱高程度熔融的高镁玄武岩浆,成矿岩体与峨眉山低钛玄武岩同源,矿化岩体主要产于峨眉山地幔柱活动模型的内带低钛玄武岩分布区;金宝山、朱布、力马河、杨柳坪矿床分别代表峨眉山地幔柱Cu-Ni-PGE成矿作用不同成矿机制的端员类型。  相似文献   

6.
为什么要提出西藏东南部早白垩世措美大火成岩省   总被引:13,自引:3,他引:10  
朱弟成  夏瑛  裘碧波  王青  赵志丹 《岩石学报》2013,29(11):3659-3670
近年在西藏东南部特提斯喜马拉雅带东段大规模白垩纪火成岩受到了很多学者的关注。这里的火成岩岩石类型包括玄武岩、镁铁质岩墙/岩床、辉长岩侵入体以及少量层状超镁铁质岩和酸性火山岩。锆石U-Pb定年结果指示现今覆盖面积约50000km2的岩浆活动发生在130~136Ma(峰期约132Ma)之间。镁铁质岩显示OIB型(高Ti)、N-MORB型(低Ti)和过渡型(介于二者之间)三种地球化学类型,其中未受地壳混染的镁铁质岩的Sr-Nd同位素和锆石Hf同位素成分类似于Kerguelen地幔柱产物。在扣除堆晶橄榄石之后,通过橄榄石-熔体平衡计算,苦橄玢岩母岩浆的MgO含量约20%,对应的地幔潜温1560℃。西藏东南部白垩纪火成岩浆活动这种覆盖范围大、持续时间短和地幔潜温高等特征,非常类似于世界上其它地幔柱成因的大火成岩省或热点,因而将其描述和命名为措美(Comei)大火成岩省是合理的。年代学、地球化学和古地理重建资料显示藏南措美大火成岩省和南西澳大利亚同期的Bunbury玄武岩可能代表了同一个大火成岩省(即Comei-Bunbury大火成岩省)。Comei-Bunbury大火成岩省很可能记录了Kerguelen地幔柱在132Ma左右的早期岩浆作用,拉开了大印度从澳大利亚分离出来的序幕,影响了同期Weissert大洋缺氧事件的形成。  相似文献   

7.
系统总结分析了峨眉山大火成岩省的同位素地球化学研究成果。总结前人研究资料中大量峨眉山大火成岩省(ELIP)中玄武岩和侵入体的同位素年龄数据,并结合生物地层学特征,确认我国西南峨眉山大火成岩省中的各个岩石单元的形成时代为251~263 Ma,其中基性-超基性侵入岩体形成于约259 Ma,而作为峨眉山大火成岩省主体的峨眉山玄武岩系形成于251~253 Ma。Sr-Nd、Re-Os、Lu-Hf及O同位素地球化学数据表明峨眉山大火成岩省的源区为地幔柱或者大陆岩石圈地幔(SCLM),其中峨眉山玄武岩与富含Fe-Ti氧化物基性侵入体的Sr-Nd同位素特征相似,具有与OIB相似的同位素性质;而含Cu-Ni硫化物的基性-超基性岩体的同位素特征接近地壳物质,可能与地壳混染作用有关。  相似文献   

8.
<正>太和层状镁铁质-超镁铁质岩体位于峨眉山大火成岩省内带,是几个赋存超大型钒钛磁铁矿床的层状岩体之一。太和岩体呈单斜层状产出,长约3 km,宽约2 km,厚约1.2 km左右,倾向东南,倾角50°60°。锆石U-Pb年龄分析表明太和岩体的结晶年龄在259±3 Ma,这说明太和岩体形成于峨眉山地幔柱岩浆活动期。根据矿物组合以及矿物含量、结构特征等,岩体从下向上划  相似文献   

9.
对西南地区茅口灰岩生物地层对比和峨眉山玄武岩与茅口灰岩之间的界面特征的研究表明,上扬子西缘茅口灰岩在玄武岩喷发前存在差异剥蚀,自西到东可分为深度剥蚀带(内带)、部分剥蚀带(中带)、古风化壳或短暂沉积间断带(外带)和连续沉积带;整个剥蚀区的范围同峨眉山玄武岩分布区基本一致。差异剥蚀是中二叠世晚期上扬子西缘一次快速地壳抬升和穹状隆起的结果,这说明峨眉山大火成岩省的形成与地幔柱活动有关。根据上升地幔柱地表抬升模型对峨眉山大火成岩省空间展布进行了讨论,并推算出该大火成岩省的规模。  相似文献   

10.
姚林波  陶琰 《矿物学报》2011,(Z1):183-184
地幔柱成矿系统中,岩浆型Cu-Ni-PGE矿床是最重要成矿作用之一。峨眉山大火成岩省岩浆型Cu-Ni-PGE矿化岩体广泛分布,构成了峨眉山地幔柱成矿系统中一个非常重要的成矿系列(陶琰等,2007)。地幔柱活动形成大火成岩省(主要由玄武岩和时空上紧密伴生的镁铁—超镁  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987113001072   总被引:6,自引:1,他引:5  
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian.  相似文献   

12.
The Himalaya and Lhasa blocks act as the main belt of convergence and collision between the Indian and Eurasian plates. Their crustal structures can be used to understand the dynamic process of continent–continent collision. Herein, we present a 3D crustal density model beneath these two tectonic blocks constrained by a review of all available active seismic and passive seismological results on the velocity structure of crust and lower lithosphere. From our final crustal density model, we infer that the present subduction-angle of the Indian plate is small, but presents some variations along the west–east extension of the orogenic belt: The dip angle of the Moho interface is about 8–9° in the eastern and western part of the orogenic belt, and about 16° in the central part. Integrating crustal P-wave velocity distribution from wide-angle seismic profiling, geothermal data and our crustal density model, we infer a crustal composition model, which is composed of an upper crust with granite–granodiorite and granite gneiss beneath the Lhasa block; biotite gneiss and phyllite beneath the Himalaya, a middle crust with granulite facies and possible pelitic gneisses, and a lower crust with gabbro–norite–troctolite and mafic granulite beneath the Lhasa block. Our density structure (<3.2 g/cm3) and composition (no fitting to eclogite) in the lower crust do not be favor to the speculation of ecologitized lower crust beneath Himalaya and the southern of Lhasa block.  相似文献   

13.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   

14.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

15.
扬子克拉通西缘在~260Ma发生短期内大规模峨眉山玄武岩溢流喷发。攀西地区发育的镁铁-超镁铁质岩被广泛认为是峨眉山大火成岩省的产物,但在北端松潘-甘孜岩区一直缺乏该类岩石的报道。本文首次报道扬子西缘丹巴水子乡单斜辉石岩的准确年龄,其锆石LA-ICP-MS U-Pb加权平均年龄为260.7±3.3Ma,表明其为峨眉山大火成岩省北端松潘-甘孜岩区镁铁-超镁铁质岩的组成部分。通过与攀枝花钒钛磁铁矿含矿岩体边缘相带苦橄岩和上部相带浅色辉长岩进行锆石微量元素对比显示,水子乡单斜辉石岩具有相近的高氧逸度,其ΔQFM为0~3,Ce_(N)/Ce_(N)平均为~30,该性质可能同样源自扬子西缘洋壳板片俯冲交代形成的较高氧逸度地幔源区。尽管如此,水子乡辉石岩体并未因高氧逸度而有明显的含钛磁铁矿饱和结晶,可能由其较低结晶分异程度造成。相比之下,攀枝花岩体经历了更高程度的含钛磁铁矿和斜长石分离结晶作用,伴随大规模的钒钛磁铁矿成矿。  相似文献   

16.
S.B. Lyngsie  H. Thybo   《Tectonophysics》2007,429(3-4):201-227
We present a new model for the lithospheric structure of the transitions between Laurentia, Avalonia and Baltica in the North Sea, northwestern Europe based on 2¾D potential field modelling of MONA LISA profile 3 across the Central Graben, with constraints from seismic P-wave velocity models and the crustal normal incidence reflection section along the profile. The model shows evidence for the presence of upper-and lower Palaeozoic sedimentary rocks as well as differences in crustal structure between the palaeo-continents Laurentia, Avalonia and Baltica. Our new model, together with previous results from transformations of the gravity and magnetic fields, demonstrates correlation between crustal magnetic domains along the profile and the terrane affinity of the crust. This integrated interpretation indicates that a 150 km wide zone, characterized by low-grade metamorphosis and oblique thrusting of Avalonia crust over Baltica lower crust, is characteristic for the central North Sea area. The magnetic susceptibility and the density across the Coffee Soil Fault range from almost zero and 2715 kg/m3 in Avalonia crust to 0.05 SI and 2775 kg/m3 in Baltica crust. The model of MONA LISA profile 3 indicates that the transition between Avalonia and Baltica is located beneath the Central Graben with a ramp–flat–ramp geometry. Our results indicate that the initial rifting of the Central Graben and the Viking Graben was controlled by the location of the Caledonian collisional suture, located at the Coffee Soil Fault, and that the deep crustal part of Baltica extends further to the west than hitherto believed.  相似文献   

17.
The Uralide orogen, in Central Russia, is the focus of intense geoscientific investigations during recent years. The international research is motivated by some unusual lithospheric features compared with other collisional belts including the preservation of (a) a collisional architecture with an orogenic root and a crustal thickness of 55–58 km, and (b) large volumes of very low-grade and non-metamorphic oceanic crust and island arc rocks in the upper crust of a low–relief mountain belt. The latter cause anomalous gravity highs along the thickened crust and the isostatic equilibrium inside the Uralides lithosphere as well as the overthrust high-metamorphic rocks. The integrated URSEIS '95 seismic experiment provides fundamentally new data revealing the lithospheric architecture of an intact Paleozoic collisional orogen that allows the construction of density models. In the Urals' lithosphere different velocity structures resolved by wide-angle seismic experiments along both the URSEIS '95- and the Troitsk profile. They can be used to constrain lithospheric density models: a first model consists of a deep subducted continental lower crust which has been highly eclogitized at depths of 60–90 km to a density of 3550 kg/m3. The second model shows a slightly eclogitized lower crust underlying the Uralide orogen with a crustal thickness of 60 km. The eclogitized lower crust causes a too-small impedance contrast to the lithospheric mantle resulting in a lack of reflectors in the area of the largest crustal thickness. Both models fit the measured gravity field. Analyzing the isostatic state of the southern Urals' lithosphere, both density models are in isostatic equilibrium.  相似文献   

18.
《International Geology Review》2012,54(10):1215-1233
ABSTRACT

Well-documented outcrops around the Emeishan Large Igneous Province (ELIP) in South China, eastern Tethys, encompassing the end-Guadalupian mass extinction have been investigated. Correlatable sections recording the event exhibit very similar lithological characters, positive-then-negative C isotope excursions and massive biotic demise. Detailed analyses of the fossil record and carbon isotopic variations were carried out on the Guadalupian–Wuchiapingian Boundary sections over the inner, middle, outer zones of the ELIP and its margin. Due to a pronounced decrease in marine habitat area and the environmental and ecological change over this part of the Tethys, the biota crisis records show the loss of numerous tropical invertebrate taxa, and exhibit fewer genera and smaller testing sizes and low productivity. The biota crisis was a sustainable and gradual reduction in diversity over the Capitanian. The associated carbon isotopic data reveal unusually high δ13C(carb) values before the late Capitanian, representing higher primary productivity (or buried rate) and more 13C-enriched CO2 released by hydrothermal carbonate breakdown from the upper crust into the sediments at that time. Subsequently, an accelerated negative excursion across the boundary and the gradual excursion with low carbon isotope amplitude favours an increased influx of light 12C sourced by the volcanism around the eastern Tethys. The very similar time–space relation between the biota crisis and the Emeishan volcanism confirms that volcanic eruptions may have triggered the biota crisis event in South China. Intensive volcanism could result in detrimental environmental and ecological stresses, habitat loss, organic material splitting, or the emission of light carbon and thermal fluid (or aerosol), implying that the losses of the shallow-marine invertebrates either occurred geologically instantaneously or in a series of closely spaced crises coinciding with the initial phase of ELIP formation. These findings in South China may reveal the causal relation between mass extinctions and LIPs in a global context.  相似文献   

19.
The southern segment of the seismic profile EUROBRIDGE—EUROBRIDGE-97 (EB'97)—located in Belarus and Ukraine, crosses the suture zone between two main segments of the East European Craton—Fennoscandia and Sarmatia—as well as Sarmatia itself. At the initial stage of our study, a 3-D density model has been constructed for the crust of the study region, including the major part of the Osnitsa–Mikashevichi Igneous Belt (OMIB) superimposed by sediments of the Pripyat Trough (PT), and three domains in the Ukrainian Shield—the Volhyn Domain (VD) with the anorthosite–rapakivi Korosten Pluton (KP), the Podolian Domain (PD), and the Ros–Tikich Domain (RTD). The model comprises three layers—sediments with maximum thickness (6 km) in the PT and two heterogeneous layers in the crystalline crust separated at a depth of 15 km. 3-D calculations show the main features of the observed gravity field are caused by density heterogeneities in the upper crust. Allocation of density domains deeper than 15 km is influenced by Moho topography. Fitting the densities here reveals an increase (up to 2960 kg m−3) in the modelled bodies accompanied by a Moho deepening to 50 km. In contrast, a Moho uplift to a level of 35–37 km below the KP and major part of the PT is associated with domains of reduced densities. An important role for the deep Odessa–Gomel tectonic zone, dividing the crust into two regions one of basically Archean consolidation in the west (PD and RTD) and one of Proterozoic crust in the east (Kirovograd Domain)—was confirmed.2-D density modelling on the EB'97 profile shows that in the upper crust three main domains of different Precambrian evolution—the OMIB (with the superimposed PT), the VD with the KP, and the PD—can be distinguished. Deeper, in the middle and lower crust, layered structures having no connection to the surface geology are dominant features of the models. Least thickness of the crust was obtained below the KP. Greatest crustal thickness (more than 50 km) was found below the PD, characterised also by maximum deviation of velocity/density relation in the rocks from a standard one. The velocity and density models along the EB'97 profile have been interpreted together with inferred Vp/Vs ratios to estimate crustal composition in terms of SiO2 content. In the course of the modelling, the status of the PD as a centre of Archean granulitic consolidation has been confirmed. The crustal structure of the anorthosite–rapakivi KP is complex. For the first time, a complicated structure for the lower crust and lower crust–upper mantle transition zone beneath the KP has been determined. The peculiarities of the crustal structure of the KP are quite well explained in terms of formation of rapakivi–anorthosite massifs as originating from melt chambers in the upper mantle and lower crust. An important role for the South Pripyat Fault (SPF), repeatedly activated during Proterozoic–Palaeozoic times, has been ascertained. At the subplatform stage of crustal evolution the SPF was, probably, a magma channel facilitating the granitic intrusions of the KP. In the Palaeozoic the fault was reactivated during rifting in the PT.  相似文献   

20.
Yoji Arakawa 《Lithos》1989,24(4):261-273
The Sr isotopic compositions of Late Triassic to Early Jurassic Funatsu granitic rocks in the Hida belt, Japan, were determined and variations of the compositions within single intrusions and on a regional scale were compared with previously reported data.

Relatively low and constant (or narrow range of) initial 87Sr/86Sr ratios of granitic rocks within an intrusion (0.7044-0.7055) are found mostly in the outer part of the belt, while intrusions with high and wide ranges of initial ratios (0.7056-0.7105) are situated in the inner part. This difference in initial ratios within an intrusion is due to the different degrees of mixing between the parental mafic magma from the lower crust or upper mantle and the middle to upper crustal (or crust-derived) materials. On a regional scale, a smooth and regular increase of the ratios from 0.7044 to 0.7057, from outer to inner part, is outlined by the lowest ratio in each intrusion and this almost coincides with a trend given by the ratios of mafic rocks (or mafic enclaves) in the intrusion. This suggests a gradual change of source materials in the lower crust or upper mantle. The degree of crustal contributions to the parental magma, lesser in the outer part and larger in the inner part of the Hida belt, shows close relationships to some geophysical factors, such as the emplacement depth and uplift rate of mafic magma from deeper levels and stress state (extensional or compressional) in the middle to upper crustal levels. These factors are probably due to the plate tectonic configuration in the continental margin area where the Hida belt was included.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号