首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The inversion routine proposed by Aueret al. (1977), for the determination of vector magnetic fields from Stokes profiles, has been generalized to include magneto-optical and damping effects. Synthetic profiles have then been generated from a sunspot model atmosphere accounting for the depth variation of the relevant physical parameters such as the magnetic field amplitude, inclination angle, etc...., each variation being considered one at a time. Alfvén waves and magnetic inhomogeneities over the field of view have also been considered. These synthetic profiles have been presented to the inversion routine. The results of the fits show that the magnetic field amplitude and direction are always recovered with good accuracy when these quantities are constant in the model atmosphere, and, in those cases where te magnetic field vector is supposed to vary monotonically with optical depth, the values recovered are always intermediate between the values corresponding to the top and bottom of the atmosphere. Moreover, we found that the differences between synthetic and best-fit profiles are able to characterize, in many cases, the particular physical situation considered.  相似文献   

2.
The application of Unno's (1956) solution of the transfer equation for polarized radiation to the determination of thevector magnetic field is investigated. An analysis procedure utilizing non-linear least squares techniques is developed that allows one to automate the reduction of measured spectral profiles of the Stokes parameters to determine the field angles, strength as well as other parameters. The method is applied to synthetic spectra generated using a model solar atmosphere and yields results of remarkably high accuracy. The influence of additional factors upon determination of the vector field are also considered. These factors include effects of asymmetric profiles, magneto-optical effects, magnetic field gradients, unresolved field elements, scattered light, and instrumental noise.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

3.
Zhang  Hongqi 《Solar physics》2000,197(2):235-251
In this paper, we analyse Stokes parameters I,Q,U of the Fei 5324.19Å line, calculated with radiative transfer equations in a solar model atmosphere with a magnetic field, and the influence of magneto-optical effects on the measurement of transverse magnetic field. It is found that the measurement of azimuthal angles of the transverse field is obviously disturbed by the magneto-optical effects. We compare with the observational Stokes images Q and U at different wavelengths from the center to the wing of the Fei 5324.19Å line obtained at Huairou Solar Observing Station of Beijing Astronomical Observatory to confirm azimuthal angles of the transverse field, because the insignificant influence of magneto-optical effects in the far wing of the line was found by the theoretical analysis. The accuracy of azimuthal angles of the transverse field measured near the Fei 5324.19Å line center has been estimated.  相似文献   

4.
A diagnostic method for the determination of the vector magnetic field through the interpretation of spectropolarimetric profiles observed in solar active regions is presented. An inversion routine, that is based on the analytical solution of the radiative transfer equation for polarized radiation given by Unno and Rachkowsky, is described; the routine performs a comparison among theoretical profiles depending on eight parameters and the observed profiles by means of a non linear least square fit. The routine has been applied to the interpretation of the spectropolarimetric profiles observed on 15 September, 1980 in a sunspot with the spectropolarimeter (Stokes II) of the High Altitude Observatory, National Center for Atmospheric Research*. One of the eight parameters (the line center) gives information on the plasma motions. The significance of these motions inside the sunspot is discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
We compare the results of two distinct methods for deriving photospheric vector magnetic fields from the Zeeman effect as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA.). One method ignores magneto-optical effects but allows for an absolute determination of B from the integral properties of the Stokes profiles, under the assumption of weak field strength. The other method is an iterative least-squares fitting technique developed by Lites and Skumanich which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. We find empirically that for sunspot fields above 1500 gauss the two methods agree in derived azimuthal and inclination angles to within ± 20 degs., Furthermore, for such fields, the estimate of the line of sight field and the transverse field derived using the two methods agree to within ± 500 gauss. In weak field strength regions the integral method can be used with little error and computational load in the estimation of the line of sight field, the transverse field and the inclination angle but the disagreement in derived azimuthal angle is considerable ( ± 90 degs.).  相似文献   

6.
The magneto-optical filter   总被引:1,自引:0,他引:1  
A. Cacciani  M. Fofi 《Solar physics》1978,59(1):179-189
In this paper we describe a filter which utilizes magneto-optical effects for velocity fields measurements. The working principle of the instrument is described and its transmission profiles are given. Velocitygrams are shown of the five minutes oscillations (FMO) and the results compared with the expected (theoretical) signal from the instrument. We found a V rms of 400 m s–1 for the FMO.  相似文献   

7.
H. Hamedivafa 《Solar physics》2013,286(2):327-346
We aim to study the physical nature of a central umbral dot (UD) close to disk center by analyzing full-Stokes spectra of the two Fe?i lines at 630 nm recorded by the spectropolarimeter on Hinode. Thermal and magnetic properties of the UD were directly inferred from Stokes profiles. Then, we applied the inversion code SIR to retrieve a single-component magnetic model atmosphere that recovers the observed full-Stokes profiles. The inversion results and direct inferences from the iron line pair are consistent. The studied UD does not show any signatures of upflows, but tends to show downflows. At the deeper-half of the photosphere (logτ>?1.0), the UD exhibits rapid changes in temperature with respect to its surroundings. The UD has a large magnetic field strength of about 3000 G without significant reduction at its center. Magnetic field lines are more vertical and twisted in the UD area than in the magnetic field of its surroundings. To explain the observational findings, we propose that the UD perturbs the funnel magnetic field of the umbra, making a tilt-ankle-knee configuration. A new interesting inference, deduced from the blending spectral lines in the observed wavelength interval, is that the shape and surface span of the UD in normalized intensity filtergrams computed at the core of the blending lines differ from the UD area seen in continuum intensity and in the filtergrams computed at the core of the iron line pair.  相似文献   

8.
The topic of magnetic field diagnostics with the Zeeman effect is currently vividly discussed. There are some testable inversion codes available to the spectropolarimetry community and their application allowed for a better understanding of the magnetism of the solar atmosphere. In this context, we propose an inversion technique associated with a new numerical code. The inversion procedure is promising and particularly successful for interpreting the Stokes profiles in quick and sufficiently precise way. In our inversion, we fit a part of each Stokes profile around a target wavelength, and then determine the magnetic field as a function of the wavelength which is equivalent to get the magnetic field as a function of the height of line formation.To test the performance of the new numerical code, we employed “hare and hound” approach by comparing an exact solution (called input) with the solution obtained by the code (called output). The precision of the code is also checked by comparing our results to the ones obtained with the HAO MERLIN code. The inversion code has been applied to synthetic Stokes profiles of the Na D1 line available in the literature. We investigated the limitations in recovering the input field in case of noisy data. As an application, we applied our inversion code to the polarization profiles of the Fe i λ 6302.5 Å observed at IRSOL in Locarno.  相似文献   

9.
We address the magnetic field structure of solar pores. The data were obtained at the Gregory Coudè telescope at Izaña using the AT1 CCD camera system to observe pores with three spectral lines: one magnetically sensitive line, recording all 4 Stokes profiles, and two g = 0 lines where only the intensity profiles were measured. The data reduction included the standard procedure (removing dark current and flatfielding) as well as destretching of the polarimetric spectra and removing the non-magnetic straylight by means of a 2-d deconvolution of the observed intensity variation using a Lucy-Richardson restoration algorithm. In the following analysis we first determined the temperature- and pressure stratification of the pore using the g = 0 lines and then applied an inversion of the Stokes profiles to get the parameters of the magnetic field. Across the pore we find a strong variation of the resulting field strength as well as of the inclination and the azimuth, consistent with the assumption of a canopy forming in the higher atmosphere.  相似文献   

10.
This paper presents some numerical results relative to a solution, based on the density matrix formalism, of the non-LTE, polarized radiative transfer problem for a two-level atom. The results concern the atomic upper level population and alignment, and the emergent radiation Stokes profiles, for a plane-parallel, static, isothermal atmosphere embedded in a magnetic field of intermediate strength, such that the Zeeman splitting has to be taken into account in the line profile. Zeeman coherences are neglected, whereas magneto-optical effects are taken into account, resulting in a full 4×4 absorption matrix. Induced emission is neglected and complete frequency redistribution, in the rest and laboratory frames, is assumed. Pure Doppler absorption profile (gaussian shape) has also been assumed. The presentation of the results is preceded by a brief discussion of their accuracy and of the numerical difficulties that were met in the solution of the problem.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italia  相似文献   

11.
Climatic temperature changes at the ground surface propagate downward to the subsurface creating transient disturbances to the temperature—depth (T(z)) profile. Due to the poor thermal diffusivity of rocks the disturbances are preserved long times in the bedrock, and in a conductive regime it is possible to reveal the ground surface temperature (GST) history from borehole temperature data with inversion techniques. Geothermal temperature measurements thus provide a source of palaeoclimatic information which so far has not been utilized extensively. Inversion of GST history is, however, not straightforward and any disturbing effects should be excluded before the data can be utilized in inversion. Groundwater flow is of special importance in this respect because it is a common phenomenon in bedrock and convection often produces temperature—depth profiles resembling those affected by palaeoclimatic GST changes. In interpreting temperature—depth (T(z)) logs it is therefore not always clear whether the recorded vertical gradient variations should be attributed to the effects of palaeoclimatic ground surface temperature (GST) changes or to groundwater circulation. Using several synthetic T(z) profiles and applying general least squares inversion techniques we simulate a situation of “misinterpreting” the curvature of the T(z) profile in terms of palaeoclimatic GST changes, although it is actually produced by convective heat transfer due to groundwater flow. For comparison the opposite case is also studied, namely, genuine palaeoclimatic effects are misinterpreted as being due to disturbances caused by groundwater flow. A homogeneous half-space model is used to model T(z) profiles disturbed conductively by GST changes during the time interval 10–10000 yr B.P. and a one-dimensional porous layer model is applied for convective heat transfer calculations. The results indicate that a given T(z) profile can be attributed to either of these effects with reasonable parameter values. In addition to the synthetic T(z) profiles, a case history from a 958 m deep drill hole at Lavia, southwestern Finland, is presented. Special care is needed in analyzing T(z) data. A knowledge of geothermal data, such as temperature, thermal conductivity and diffusivity is not necessarily adequate for determining which of the phenomena (or whether a combination of them) provides the most probable interpretation of a T(z) profile. Additional information on the hydrogeological properties of the drilled strata is essential.  相似文献   

12.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

13.
Steiner  Oskar 《Solar physics》2000,196(2):245-268
A magnetopause that separates two regimes of different flow, additional to the separation of a magnetic field from a field-free plasma, gives rise to the formation of asymmetric Stokes profiles. Using a simple two-layer model atmosphere, where one layer comprises a magnetic field, the other being field-free, it is shown by analytical derivation that a wide variety of Stokes V profiles can be produced, having amplitude asymmetries a in the range –a. These include two-humped V profiles, which have two lobes of equal sign. For the most simple models, the asymmetry depends on the ratio of continuum intensity to the Planck radiation intensity of the magnetic layer at the wavelength of the spectral line under consideration, and on the line depth. Two-humped profiles (|a|>1) require the temperature of the magnetic layer to surpass the temperature of the line-core forming region, implying a temperature inversion, so that the V profile is partially in emission. The confrontation of this formation scenario with properties of observed one-lobe profiles of quiet-Sun network regions is inconclusive due to insufficient spatial resolution and lack of a sufficient sample of simultaneously recorded Stokes spectral lines of varying line depths. It seems, however, to be in good agreement with the observed frequent occurrence of abnormal V profiles of the very strong Nai D 2 and D 2 spectral line. A possible observational verification for the present formation scenario of abnormal Stokes V profiles and a novel method of Stokes inversion are discussed.  相似文献   

14.
We have used Stanford magnetic field maps to construct distributions of longitudinal magnetic field gradients in the neighbourhood of polarity inversion lines. The distributions were constructed with proper account of the type of the polarity inversion lines and of the existence or absence of dark filaments above them. It is shown that for polarity inversion lines that pass inside active regions or on their boundary, grad BII distributions for portions of the lines with persisting filament are shifted toward lower values of gradient as compared with grad BII distributions for portions of the lines without filaments. The influence of the spatial resolution of the magnetograms upon polarity inversion line characteristics is discussed.  相似文献   

15.
We investigate the accuracy to which we can retrieve the solar photospheric magnetic field vector using the Helioseismic and Magnetic Imager (HMI) that will fly onboard of the Solar Dynamics Observatory by inverting simulated HMI profiles. The simulated profiles realistically take into account the effects of the photon noise, limited spectral resolution, instrumental polarization modulation, solar p modes, and temporal averaging. The accuracy of the determination of the magnetic field vector is studied by considering the different operational modes of the instrument.  相似文献   

16.
推导了GPS无线电掩星振幅观测反演地球大气技术中Abel积分变换中的天顶补偿项 ,定性地说明了天顶补偿项对计算过程和反演剖面的影响。  相似文献   

17.
F. Kneer  F. Stolpe 《Solar physics》1996,164(1-2):303-310
This contribution deals with the properties of small-scale magnetic elements in plages. Spectro-polarimetric observations, obtained with the highest possible spatial resolution with the German solar telescopes at the Observatorio del Teide on Tenerife, were analysed. We conclude from the spread of line parameters measured in the Stokes I and V profiles of Fe I and Fe II lines that a wide range of magnetic properties is realised in the solar atmosphere. The flow velocities in small-scale magnetic flux tubes, deduced from the zero-crossing of the V profiles at high spatial resolution, show a fluctuation of v Doppler = 580 m s-1. This is substantially smaller than the turbulent broadening velocities of v Doppler = 2 – 3 km s–1 commonly derived by fitting V profiles from flux tube models to low spatial resolution data, e.g. from a Fourier Transform Spectrometer. Attempts to explain the high resolution I and V profiles by models of hydrostatic flux tubes are discussed. It appears impossible to accomplish agreement between the modeled and observed radiation of lines with strong and weak magnetic sensitivity at the same time. We suggest a scenario in which small-scale magnetic elements possess substructure and are dynamic, with gas flows and magnetic field strengths varying in space and time.  相似文献   

18.
Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the “sound-speed” difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R and that the strengths of magnetic-field effects at the surface and in the deeper (r<0.98R ) layers are inversely related (i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa). We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.  相似文献   

19.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

20.
A new inversion technique for obtaining temperature, pressure, and number density profiles of a planetary atmosphere from an occultation light curve is described. This technique employs an improved boundary condition to begin the numerical inversion and permits the computation of errors in the profiles caused by photon noise in the light curve. We present our assumptions about the atmosphere, optics, and noise and develop the equations for temperature, pressure, and number density and their associated errors. By inverting in equal increments of altitude, Δh, rather than in equal increments of time, Δt, the inversion need not be halted at the first negative point on the light curve as required by previous methods. The importance of the boundary condition is stressed, and a new initial condition is given. Numerical results are presented for the special case of inversion of a noisy isothermal light curve. From these results, simple relations are developed which can be used to predict the noise quality of an occultation. It is found that fractional errors in temperature profiles are comparable to those of pressure and number density profiles. An example of the inversion method is shown. Finally, we discuss the validity of our assumptions. In an appendix we demonstrate that minimum fractional errors in scale height determined from the inversion are comparable to those from an isothermal fit to a noisy isothermal light curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号