首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
During 1973–1977, as part of the International Geodynamic Project, some seismic investigations of the Earth's crust have been carried out by geotraverses of the Tien Shan—Pamirs—Karakorum—Himalayas. The seismic data obtained together with other geophysical information, allow the construction and interpretation of the lithospheric section through the Pamirs-Himalayas structure. This section includes thick crust with complex layering, supra-asthenospheric and asthenospheric layers of the upper mantle. The thickness of the Earth's crust increases from 50–55 km in the north, in the Ferghana depression (Tien Shan), to 70–75 km in the south, near the Karakul Lake (Northern Pamir). It varies within 60–65 km for the Central and Southern Pamir, Karakorum and the Inner Himalayas. Its thickness is least (35–37 km) in the south, under the outer margin of the Himalayan foredeep. Extreme gravity minima and depressions on the geoid surface correspond to the regions with maximum thickness of the Earth's crust. The centers of the disturbing masses on the geoid surface are located in the vicinity of the asthenosphere's upper layer; this determines the effect of the whole lithospheric layer, including its asthenospheric layer, at intense changes of gravity anomalies. The asthenospheric upper layer is recorded at a depth of about 120 km, its base at a depth of 200 km, in the northern and southern regions, and 300 km in its central part (Southern Pamir, Karakorum). In the middle asthenospheric layer, wave velocities decrease to 7.5 km/sec, under the base they increase to 8.4 km/sec and reach 9.4 km/sec at a depth of about 400 km. In the supra-asthenospheric layer of the upper mantle, longitudinal and shear wave-velocities slightly increase (by less than 0.1 km/sec) towards its base.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Structural analysis of remotely sensed data provides a method of assessing the tectonic significance of regional metallogenic lineaments in the New England Orogen of southeastern Queensland. Photogeological analysis of Landsat imagery and small-scale aerial photography reveals a pattern of WNW—NNW-oriented structures, which were apparently generated in response to Mesozoic crustal extension and reactivated during Early Tertiary block faulting. These structures tend to overprint arcuate late Palaeozoic to early Mesozoic trends and batholith belts, and exert a control over Middle to Late Triassic rifting and epizonal plutonism. The distribution of epigenetic base and precious metal deposits in the Rockhampton—Maryborough area is locally but not regionally related to identifiable structural lineaments.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号