首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a multi-wavelength study of the Be/X-ray binary system EXO 2030+375. We report that the Be companion is currently in a low-activity phase as indicated by the notable decrease of the infrared and optical emission. If this trend continues the source will lose its circumstellar envelope. Infrared spectroscopy in the IJHK bands is presented for the first time, along with optical and X-ray observations. These infrared spectra agree with the optical companion being an early-type (B0) main-sequence star. When active EXO 2030+375 shows an X-ray outburst at each periastron passage of the neutron star. In addition to the maximum X-ray luminosity displayed at orbital phase ∼0.0, we find a smaller maximum in the light curve at phase ∼0.5. This second intensity peak may be explained if the velocity of the wind is lower than or comparable to the orbital velocity of the neutron star at apastron. We also comment on the relation between the optical/infrared behaviour and the X-ray emission and argue that the X-ray inactive period observed between 1993 August and 1996 April is a result of centrifugal inhibition of accretion of matter rather than a low-activity circumstellar disc.  相似文献   

2.
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 45.99 d binary period. In addition, the optical photometry shows recurring outburst features at the binary period which may be well indicative of the neutron star interacting with a circumstellar disc around a Be star.  相似文献   

3.
SAX J2103.5+4545 is the Be/X-ray binary (BeX) with the shortest orbital period. It shows extended bright and faint X-ray states that last for a few hundred days. The main objective of this work is to investigate the relationship between the X-ray and optical variability and to characterize the spectral and timing properties of the bright and faint states. We have found a correlation between the spectral and temporal parameters that fit the energy and power spectra. Softer energy spectra correspond to softer power spectra. That is to say, when the energy spectrum is soft, the power at high frequencies is suppressed. We also present the results of our monitoring of the Hα line of the optical counterpart since its discovery in 2003. There is a correlation between the strength and shape of the Hα line, originated in the circumstellar envelope of the massive companion and the X-ray emission from the vicinity of the neutron star. Hα emission, indicative of an equatorial disc around the B-type star, is detected whenever the source is bright in X-rays. When the disc is absent, the X-ray emission decreases significantly. The long-term variability of SAX J2103.5+4545 is characterized by fast episodes of disc loss and subsequent reformation. The time-scales for the loss and reformation of the disc (about 2 yr) are the fastest among BeXs.  相似文献   

4.
We have obtained I -band photometry of the neutron star X-ray transient Aql X-1 during quiescence. We find a periodicity at 2.487 cycles d−1, which we interpret as twice the orbital frequency (19.30±0.05 h). Folding the data on the orbital period, we model the light-curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20°–30° (90 per cent confidence) and also determine the 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 and 50 km s−1, respectively.  相似文献   

5.
X-ray binaries     
Summary The various types and classes of X-ray binary are reviewed high-lighting recent results. The high mass X-ray binaries (HMXRBs) can be used to probe the nature of the mass loss from the OB star in these systems. Absorption measurements through one orbital cycle of the supergiant system X1700-37 are well modelled by a radiation driven wind and also require a gas stream trailing behind the X-ray source. In Cen X-3 the gas stream is accreted by the X-ray source via an accretion disk. Changes in the gas stream can cause the disk to thicken and the disk to obscure the X-ray source. How close the supergiant is to corotation seems to be as much a critical factor in these systems as how close it is to filling its Roche lobe. In the Be star X-ray binaries a strong correlation between the neutron stars rotation period and its orbital period has been explained as due to the neutron star being immersed in a dense, slow moving equatorial wind from the Be star. For the X-ray pulsars in the transient Be X-ray binaries a centrifugal barrier to accretion is important in determining the X-ray lightcurve and the spin evolution. The X-ray orbital modulations from the low mass X-ray binaries, LMXRBs, include eclipses by the companion and/or periodic dipping behaviour from structure at the edge of the disk. The corresponding optical modulations show a smooth sinusoidal like component and in some cases a sharp eclipse by the companion. The orbital period of the LMXRB XB1916-05 is 1% longer in the optical compared to that given by the X-ray dip period. The optical period has been interpreted as the orbital period, but this seems inconsistent with the well established view of the origin of the X-ray modulations in LMXRB. A new model is presented that assumes the X-ray dip period is the true orbital period. The 5.2 h eclipsing LMXRB XB2129+47 recently entered a low state and optical observations unexpectedly reveal an F star which is too big to fit into the binary. This is probably the first direct evidence that an X-ray binary is part of a hierarchical triple. Finally the class of X-ray binaries containing black hole candidates is reviewed focusing on the value of using X-ray signatures to identify new candidates.  相似文献   

6.
This work presents a possible detection mechanism for close, detached, neutron star–red dwarf binaries, which are expected to be the evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of neutron star wind accretion in a pre-LMXB system can be expected to exceed the intrinsic X-ray luminosity of the red dwarf secondary star. Furthermore, the temperature of the radiation emitted from the neutron star wind accretion process is expected, within the confines of a reasonable set of conditions, to lie within the detection range of X-ray satellites. Sources with X-ray luminosities greater than that expected for a red dwarf star, but the positions of which coincide with that of a red dwarf star, are then candidate pre-LMXB systems. These candidate systems should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a high-mass compact object.  相似文献   

7.
We present optical and infrared observations of BQ Cam, the optical counterpart to the Be/X-ray transient system V0332+53. BQ Cam is shown to be an O8–9Ve star, which places V0332+53 at a distance of ∼7 kpc. H α spectroscopy and infrared photometry are used to discuss the evolution of the circumstellar envelope. Owing to the low inclination of the system, parameters are strongly constrained. We find strong evidence for a tilt of the orbital plane with respect to the circumstellar disc (presumably on the equatorial plane). Even though the periastron distance is only ≈10 R *, during the present quiescent state the circumstellar disc does not extend to the distance of periastron passage. Under these conditions, X-ray emission is effectively prevented by centrifugal inhibition of accretion. The circumstellar disc is shown to be optically thick at optical and infrared wavelengths, which, together with its small size, is taken as an indication of tidal truncation.  相似文献   

8.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

9.
New optical spectroscopy of the high-mass X-ray binary microquasar LS I +61 303 is presented. Eccentric orbital fits to our radial velocity measurements yield updated orbital parameters in good agreement with previous work. Our orbital solution indicates that the periastron passage occurs at radio phase 0.23 and the X-ray/radio outbursts are triggered 2.5–4 d after the compact star passage. The spectrum of the optical star is consistent with a B0 V spectral type and contributes ∼65 per cent of the total light, the remainder being the result of emission by a circumstellar disc. We also measure the projected rotational velocity to be   v sin  i ≃ 113 km s−1  .  相似文献   

10.
We report the detection of a stable super-orbital period in the high-mass X-ray binary 2S 0114+650. Analyses of data from the Rossi X-ray Timing Explorer All-Sky Monitor from 1996 January 5 to 2004 August 25 reveal a super-orbital period of 30.7±0.1 d, in addition to confirming the previously reported neutron star spin period of 2.7 h and the binary orbital period of 11.6 d. It is unclear if the super-orbital period can be ascribed to the precession of a warped accretion disc in the system.  相似文献   

11.
We present simultaneous high-resolution optical spectroscopy and X-ray data of the X-ray binary system GR Mus (XB 1254–690), obtained over a full range of orbital phases. The X-ray observations are used to re-establish the orbital ephemeris for this source. The optical data include the first spectroscopic detection of the donor star in this system through the use of the Doppler Tomography technique on the Bowen fluorescence blend (∼4630–4650 Å). In combination with an estimate for the orbital parameters of the compact object using the wings of the He  ii λ4686 emission line, dynamical mass constraints of  1.20 ≤ M X /M≤ 2.64  for the neutron star and  0.45 ≤ M 2/M≤ 0.85  for the companion are derived.  相似文献   

12.
We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626–67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3σ upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb-Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.  相似文献   

13.
We present the results of simultaneous X-ray and radio observations of the peculiar Z-type neutron star X-ray binary Cir X-1, observed with the Rossi X-ray Timing Explorer satellite and the Australia Telescope Compact Array in 2000 October and 2002 December. We identify typical Z-source behaviour in the power density spectra as well as characteristic Z patterns drawn in an X-ray hardness–intensity diagram. Power spectra typical of bright atoll sources have also been identified at orbital phases after the periastron passage, while orbital phases before the periastron passage are characterized by power spectra that are typical neither of Z nor of atoll sources. We investigate the coupling between the X-ray and the radio properties, focusing on three orbital phases when an enhancement of the radio flux density has been detected, to test the link between the inflow (X-ray) and the outflow (radio jet) to/from the compact object. In two out of three cases, we associate the presence of the radio jet to a spectral transition in the X-rays, although the transition does not precede the radio flare, as detected in other Z sources. An analogous behaviour has recently been found in the black hole candidate GX 339-4. In the third case, the radio light curve shows a similar shape to the X-ray light curve. We discuss our results in the context of jet models, considering also black hole candidates.  相似文献   

14.
We observed the neutron star X-ray transient 2S 1803−245 in quiescence with the X-ray satellite XMM–Newton , but did not detect it. An analysis of the X-ray bursts observed during the 1998 outburst of 2S 1803−245 gives an upper limit to the distance of ≤7.3 kpc, leading to an upper limit on the quiescent 0.5–10 keV X-ray luminosity of  ≤2.8 × 1032 erg s−1  (3σ). Since the expected orbital period of 2S 1803−245 is several hours, this limit is not much higher than those observed for the quiescent black hole transients with similar orbital periods.  相似文献   

15.
We carried out I , R , V and B photometric observations of the neutron star X-ray binary RXTE J2123−058 shortly after the end of the X-ray outburst in mid-1998. We adopt the low-mass binary model to interpret our observations. After folding our data on the 0.24 821‐d orbital period, and correcting for the steady brightness decline following the outburst, we observed sinusoidal oscillations with hints of ellipsoidal modulations which became progressively more evident. Our data also show that the decline in brightness was faster in the V band than in the R and I bands. This suggests both the cooling of an irradiation-heated secondary star and the fading of an accretion disc over the nights of our observations.  相似文献   

16.
We present the results of a systematic exploration of an alternative evolutionary scenario to form double neutron star (DNS) binaries, first proposed by Brown (1995) , which does not involve a neutron star passing through a common envelope. In this scenario, the initial binary components have very similar masses, and both components have left the main sequence before they evolve into contact; preferably the primary has already developed a CO core. We have performed population synthesis simulations to study the formation of DNS binaries via this channel and to predict the orbital properties and system velocities of such systems. We obtain a merger rate for DNSs in this channel in the range of 0.1–12 Myr−1. These rates are still subject to substantial uncertainties such as the modelling of the contact phase.  相似文献   

17.
Be/X-ray binaries are systems formed by a massive Be star and a magnetized neutron star, usually in an eccentric orbit. The Be star has strong equatorial winds occasionally forming a circumstellar disk. When the neutron star intersects the disk the accretion rate dramatically increases and a transient accretion disk can be formed around the compact object. This disk can last longer than a single orbit in the case of major outbursts. If the disk rotates faster than the neutron star, the Cheng-Ruderman mechanism can produce a current of relativistic protons that would impact onto the disk surface, producing gamma-rays from neutral pion decays and initiating electromagnetic cascades inside the disk. In this paper we present calculations of the evolution of the disk parameters during both major and minor X-ray events, and we discuss the generation of gamma-ray emission at different energies within a variety of models that include both screened and unscreened disks.  相似文献   

18.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

19.
In this paper we report on optical spectroscopic observations of the low-mass X-ray binary 2S 0921–630 obtained with the Very Large Telescope. We found sinusoidal radial velocity variations of the companion star with a semi-amplitude of  99.1 ± 3.1 km s−1  modulated on a period of 9.006 ± 0.007 d, consistent with the orbital period found previously for this source, and a systemic velocity of  44.4 ± 2.4 km s−1  . Owing to X-ray irradiation, the centre of light measured by the absorption lines from the companion star is probably shifted with respect to the centre of mass. We try to correct for this using the so-called K -correction. Conservatively applying the maximum correction possible and using the previously measured rotational velocity of the companion star, we find a lower limit to the mass of the compact object in 2S 0921–630 of   MX sin3 i > 1.90 ± 0.25 M  (1σ errors). The inclination in this system is well constrained since partial eclipses have been observed in X-ray and optical bands. For inclinations in the range  60° < i < 90°  we find  1.90 ± 0.25 < MX < 2.9 ± 0.4 M  . However, using this maximum K -correction we find that the ratio between the mass of the companion star and that of the compact object, q , is 1.32 ± 0.37, implying super-Eddington mass-transfer rates; however, evidence for that has not been found in 2S 0921–630. We conclude that the compact object in 2S 0921–630 is either a (massive) neutron star or a low-mass black hole.  相似文献   

20.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号