首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Tagging studies ofSpartina alterniflora Loisel showed no significant differences in stem longevity of short, medium, and tall height forms. Mean stem longevity was 7.9 months, and the experimental turnover rate was 1.5 crops per yr. Five methods to measure productivity (peak standing crop, Milner and Hughes, Smalley, Wiegert and Evans, and Lomnicki, et al.) yielded annual net aerial primary production (NAPP) estimates ranging from 214 to 1,038 g dry wt per m2 per yr in a stand of shortSpartina. Turnover rates were computed for each of the methods by dividing the respective production value by the peak standing crop (242 g dry wt per m2 per yr). Each computed turnover rate was compared with the experimental value of 1.5 crops per yr to ultimately determine that the methods of peak standing crop, Milner and Hughes, and Smalley were underestimates and that the Wiegert and Evans method was an overestimate of NAPP in tidal marsh systems. Based on its calculated turnover rate of 1.9 crops per yr, a modified Lomnicki, et al. method provided the best NAPP estimate (454 g dry wt per m2 per yr).  相似文献   

2.
Aboveground live standing crop of giant cutgrass (Zizaniopsis miliacea) populations in similar freshwater tidal and impounded nontidal marshes were almost identical (peaking at 1,039 g per m2 in each). The mortality, however, was greater in the tidal marsh resulting in significantly (95% level) greater annual production of aboveground cutgrass in the tidal (1,530±103 g per m2 per yr) than the impounded (1,172±88 g per m2 per yr) marsh, a 31% difference which we consider to be a measure of tidal subsidy. Belowground production also was found to average higher in the tidal marsh, but estimates were not as satisfactory as the aboveground results due to sampling difficulties. Combined annual above and belowground net production comes to an estimated 2,048 ±101 g per m2 per yr for the tidal and 1,481±219 for the impounded cutgrass marsh. The potential of freshwater tidal marshes for tertiary treatment of wastes is briefly discussed.  相似文献   

3.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

4.
Net annual primary production of a sedge Carex lyngbyei dominated tidal marsh in the Fraser River estuary, British Columbia, Canada was 634 g ash-free dry weight (AFDW) per m2 per yr (687 g dry weight per m2 per yr). Mean maximum shoot elongation during the short (May to August) growing season was 1.88 cm per day from overwintering shoots. The maximum aboveground standing crop of 690 g AFDW per m2 represented only 25% of the total below-ground biomass, which appears to be controlling most of the critical life history processes of the sedge marsh. An estimate of 14 percent of the aboveground standing crop was lost through leaching of dissolved organic carbon from the growting plant. Aboveground tissue losses, which were negligible during the growing season, occurred primarily via translocation in autumn and tidal export during the winter. In situ measurements showed that of the original maximum standing crop, approximately 38%, 37%, and 25% were lost by downward translocation, tidal export, and sediment burial, respectively. Based on changes in above and belowground nutrient pools, rapid spring (May to late June) uptake rates of 109 mg N per m2 per day and 23.0 mg P per m2 per day by shoots were followed by downward translocation rates of 44.8 mg N per m2 per day and 12.2 mg P per m2 per day during late June to the end of August. Aboveground leaching rates were estimated as 23.9 mg N per m2 per day and 7.8 mg P m2 per day and belowground uptake rates as 100 mg N per m2 per day and 26 mg P per m2 per day; root uptake occurred primarily after late June. Nutrient levels in decomposing litter more than doubled over the winter period showing a pattern of nutrient enrichment characteristic of marsh ecosystems. *** DIRECT SUPPORT *** A01BY023 00004  相似文献   

5.
Patterns in seasonal abundance (no. per m2 surface area), growth and biomass (g per m2 surface area) of an annual fish, the Atlantic silverside, Menidia menidia (L.) were investigated in a marsh and more seaward bay region of Essex Bay, Massachusetts from August 1976 to May 1978 using a quantitative beach seining technique. Silverside abundance varied greatly by season and year class during the study period. Abundance was high in 1976 but winter mortality (99%) left an adult density of only .01 per m2 surface area in the marsh during spring 1977. Resultant 1977 year class density in the marsh was 1.88 per m2 by late fall 1977 but winter mortality again produced an adult density of .01 per m2 in spring 1978. Abundance was generally higher in the marsh than in the bay region especially during spring and late fall when catches in the bay were negligible. Based on catch rate comparisons, the summer and fall juvenile abundance of the 1976 year class was much higher than the juvenile abundance of the 1977 year class. Coincidentally, mean lengths and condition of the abundant 1976 year class in the late fall were significantly lower than those of the 1977 year class, suggesting density dependent population regulation. In both years, juveniles grew rapidly and reached full adult size by November when an offshore movement to deeper waters outside Essex Bay occurred. Biomass peaked in the marsh region in late fall 1977 at 7.8 g per m2 wet weight. Winter mortality was size selective, favoring larger individuals. The annual life history design of M. menidia including an offshore winter movement and high winter mortality suggests that silversides represent an important pathway of energy flow from marsh to offshore trophic systems.  相似文献   

6.
Gaseous methane loss from a brackish, intertidal salt marsh sediment was measured in April, June, August, and October 1977. Twenty-four sediment cores were taken on each date. Annual loss of methane carbon from the mud flats was 10.7 g CH4?C per m2 per year, a value closer to freshwater values than marine systems. Loss of methane fromSpartina peat was low.  相似文献   

7.
Epiphytic microbial biomass (as chlorophylla) was measured monthly in North Inlet Estuary, South Carolina, for 16 months on spatially distinct stem sections (bottom and middle) of dead and livingSpartina alterniflora growth forms (tall, medium, and short) exposed at low tide. The highest biomass was located on the bottom section of tall plants, presumably due to their relatively longer contact with creek water and associated phytoplankton, and their closer proximity to marsh sediments with associated benthic microalgae, both recruitment sources for epiphytes. Dead plants left standing from the previous year’s growth cycle had higher epiphytic biomass than living plants, which occurred mostly in late spring through fall. Epiphytic biomass was highest in the winter (mean of 1.77 mg chla (m2 marsh)−1) and lowest in the summer (mean of 0.34 mg chla (m2 marsh)−1). Because phytoplankton andSpartina production are lowest in the winter, the results emphasize the relative importance of epiphytes to growth of herbivores in this season.  相似文献   

8.
N2 fixation associated with the epiphytic community on standing dead Spartina alterniflora shoots was examined in both a natural and transplanted salt marsh in North Carolina. Acetylene reduction (AR) assays were conducted over a 24-mo period to estimate N2 fixation rates on standing dead stems and leaves. In the natural salt marsh, mean AR rates ranged from 0.5 nmol C2H4 cm?2 h?1 to 14 nmol C2H4 cm?2 h?1, while in the transplanted marsh mean AR rates ranged from 1 nmol C2H4 cm?2 h?1 to 33 nmol C2H4 cm?2 h?1. Diel AR activity of epiphytic communities in both marshes varied seasonally. Midday incubations yielded higher AR rates than nighttime incubations in the spring, while midday incubations in late summer and fall generally yielded AR rates equal to or lower than nighttime incubations. Desiccation during low tides occasionally repressed AR activity, although AR rates quickly rebounded with wetting. AR activity was localized in the epiphytic community, rather than in the underlying Spartina stem material. Based on the measured AR rates and the density of standing dead stems, the annual input of new N to the natural salt marsh via epiphytic N2 fixation is estimated to be 2.6 g N m?2 yr?1. The estimate of annual input of new N to the transplanted marsh is 3.8 g N m?2 yr?1. These estimates should be added to previous estimates of N2 fixation in marsh sediments to estimate the total contribution of new nitrogen to salt marsh nitrogen budgets.  相似文献   

9.
The influence of nitrogen level, form, and application method on the growth response of short and tallSpartina alterniflora was determined in a North Carolina salt marsh. The application of various nitrogen levels increased the aerial standing crop of shortSpartina as much as 172%, but had no significant effect on that of the tall form. Band application produced a significantly greater yield response than broadcast application in both height forms. The yield of shortSpartina increased significantly more from ammonium fertilization than from nitrate, while there was no significant effect of nitrogen form on tallSpartina. Band application of ammonium-nitrogen fertilizer significantly increased the yield of shortSpartina more than band application of nitrate-nitrogen and broadcast application of either nitrogen form.  相似文献   

10.
The spiders of two Mississippi marsh communities were studied from January 1982 through March 1983. Monthly collections were made in two adjacent marsh plant zones dominated bySpartina cynosuroides (L.) Roth andJuncus roemerianus Scheele respectively. A total of 38 species of spiders (36 inSpartina, 33 inJuncus) representing 13 families were collected. The dominant species in theSpartina zone includedPirata mayaca Gertsch,Lycosa watsoni Gertsch (Lycosidae),Clubiona saltitans Emerton,Scotinella formica (Banks) (Clubionidae),Floricormus sp. (Linyphiidae),Dictyna sylvania Chamberlin & Ivie (Dictynidae),Paramaevia hobbsae (Barnes) (Salticidae), andAgelenopsis barrowsi Gertsch (Agelenidae). The dominant species in theJuncus zone includedLycosa watsoni, Pirata mayaca, Clubiona saltitans andSarinda hentzi (Banks) (Salticidae). Density, biomass, species richness and equitability peaked in May in theJuncus zone and in June in theSpartina zone. Peak levels of density and biomass corresponded to the reproductive activity of the common species, while diversity patterns were attributable to the reproductive activity of the less common species. Mean values of density and biomass over the study period were 84.8 spiders per m2 and 155.6 mg per m2 in theSpartina zone and 39.4 spiders per m2 and 133.0 mg per m2 inJuncus zone. The Juncus zone was flooded more frequently, contained less litter, and supported lower overall density and diversity of spiders.  相似文献   

11.
Spartina alterniflora salt marshes along the southeastern United States are some of the most productive and well studied ecosystems in the world. The role of physicochemical forces in regulatingSpartina growth is well understood, while the importance of grazers remains less clear. Recent studies have shown that the abundant marsh periwinkle,Littoraria irrorata, can exert strong control overSpartina through its grazing activities, but relatively little is known about its relative effects in comparison to other marsh plant consumers. To test the relative importance of snail and insect consumers onSpartina biomass, we conducted a 7-mo field experiment testing top-down regulation ofSpartina with all combinations ofL. irrorata (removed, control, c. 215 periwinkles m−2) andSpartina planthopper,Prokelisia marginata (removed, control). Snail removal resulted in a 50% increase inSpartina biomass while removal of planthoppers had no detectable effect. Planthopper density also increased by 50% when snails were excluded. In this South Carolina marsh,L. irrorata exerts a stronger top-down control ofSpartina thanP. marginata. These results indicate trophic cascade regulation ofSpartina salt marsh is more likely to occur through the predator(s)-Littoraria-plant interaction than through the predator(s)-Prokelisia-plant relationship.  相似文献   

12.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

13.
Phragmites expansion rates (linear at 1–3% yr−1) and impacts of this expansion on high marsh macroinvertebrates, aboveground production, and litter decomposition fromPhragmites and other marsh graminoids were studied along a polyhaline to oligohaline gradient. These parameters, and fish use of creeks and high marsh, were also studied inPhragmites control sites (herbicide, mowing, and combined herbicide/mow treatments).Phragmites clones established without obvious site preferences on oligohaline marshes, expanding radially. At higher salinities,Phragmites preferentially colonized creekbank levees and disturbed upland borders, then expanded into the central marsh. Hydroperiods, but not salinities or water table, distinguishedPhragmites-dominated transects. Pooled samples ofPhragmites leaves, stems, and flowers decompose more slowly than other marsh angiosperms;Phragmites leaves alone decompose as or more rapidly than those of cattail. AbovegroundPhragmites production was 1,300 to 2,400 g m−2 (about 23% of this as leaves), versus 600–800 g m−2 for polyhaline to mesohaline meadow and 1,300 g m−2 for oligohaline cattail-sedge marsh. Macroinvertebrates appear largely unaffected byPhragmites expansion or control efforts; distribution and densities are unrelated to elevation or hydroperiod, but densities are positively related to litter cover. Dominant fish captured leaving flooded marsh wereFundulus heteroclitus andAnguilla rostrata; both preyed heavily on marsh macroinvertebrates.A. rostrata andMorone americana tended to be more common inPhragmites, but otherwise there were no major differences in use patterns betweenPhragmites and brackish meadow vegetation. SAV and macroalgal cover were markedly lower within aPhragmites-dominated creek versus one withSpartina-dominated banks. The same fish species assemblage was trapped in both plus a third within the herbicide/mow treatment. Fish biomass was greatest from theSpartina creek and lowest from thePhragmites creek, reflecting abundances ofF. heteroclitus. Mowing depressedPhragmites aboveground production and increased stem density, but was ineffective for control.Phragmites, Spartina patens, andJuncus gerardii frequencies after herbicide-only treatment were 0.53-0.21; total live cover was <8% with a heavy litter and dense standing dead stems. After two growing seasonsAgrostis stolonifera/S. patens/J. gerardii brackish meadow characterized most of the herbicide/mow treatment area;Phragmites frequency here was 0.53, contributing 3% cover. Both values more than doubled after four years; a single treatment is ineffective for long-termPhragmites control.  相似文献   

14.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

15.
Seasonal plant growth dynamics were followed for a year in undisturbed plots of tall and short formSpartina alterniflora Loisel. and in plots of short formS. alterniflora which were enriched with sewage sludge at a rate of 100 g dry sludge m?2wk?1, corresponding to a nitrogen enrichment of 2 g N m?2wk?1. Monthly determinations of aboveground live and dead biomass, density of live stems, the ratio of number of young shoots to total number of shoots, and belowground mass of macro-organic matter to a depth of 30 cm were made for each area. Sludge fertilization increased the live biomass of the short formS. alterniflora by up to 150% of the control live biomass, but had little effect on the dead biomass, stem density, or proportion of young shoots. There was a trend of increased amount of belowground macro-organic matter in fertilized compared to control plots during the last 6 months of the study. In all areas, there was a marked decrease in the proportion of young shoots from winter to early summer, followed by a rapid increase in the percent of young shoots from late summer to fall. Sampling of plots 7 and 20 months after termination of sludge enrichment showed higher plant biomass and % N content in surface soils, but no difference in N content of live plant tissue, in fertilized compared to unfertilized marsh. After 20 months, about half of the sludge nitrogen remaining in the soils of the fertilized plots had disappeared.  相似文献   

16.
The ecological importance of Plantago maritima within a salt marsh on the Bay of Fundy is documented through measurements of cover, density, and biomass. During late August 1993, peak standing crops of Plantago were as high as 532 g m?2, and composed as much as 96% of the biomass of a stand of vegetation. Plantago is a dominant component of the marsh vegetation at an elevation just above the Spartina alterniflora-dominated low marsh, and is found as a dominant when growing in association with a number of plant species characteristic of the high marsh. We hypothesize that the existence of this community is dependent upon regular ice-shearing of Spartina patens, which would otherwise competitively exclude Plantago. This hypothesis is supported by the elevational limits of Plantago dominance and the geographical limitation of Plantago communities to portions of the northwestern Atlantic subjected to winter temperatures which average below 0°C.  相似文献   

17.
Molluscs were collected monthly for a year from two low salinity (0–9‰) intertidal marshes dominated by the macrophytesJuncus roemerianus orSpartina cynosuroides in St. Louis Bay, Mississippi. TheJuncus marsh had lower soil organic matter, higher pH and was more frequently inundated than theSpartina marsh. Eight species of gastropods were abundant and dominated in the higherSpartina marsh, while three bivalve species were dominant in theJuncus marsh. Of the common species,Succinea ovalis, Vertigo ovata andDeroceras laeve are gastropods of terrestrial origins;Geukensia demissa granosissima (bivalve) andMelampus bidentatus (gastropod) are euryhaline estuarine species and the remaining gastropods (Detracia floridana, Littoridinops palustris, Onobops jacksoni) and bivalves (Polymesoda caroliniana, Cyrenoida floridana) are brackish species. Most species were capable of continuous recruitment (based on size class analysis), but exhibited peak activity in particular seasons. Bivalve abundance correlated to temperature, and gastropod abundance was negatively correlated to soil pH. These correlations reflect the influence of flooding regime at the two sites. Biomass was greater in theJuncus marsh because of the increased presence of the large-bodiedPolymesoda. Polymesoda represented >90% and >50% of the total biomass in theJuncus andSpartina (except summer) marshes respectively but always <-5% of the individuals collected. Gastropod biomass was the same in both marshes. Species diversity (H′) was greater inSpartina except for summer months. TheJuncus marsh always exhibited greater species richness. Evenness (J′) determined seasonal changes in diversity (H′). Similarity values (Cz) were always quite low, with highest values in spring In contrast to faunal studies from Gulf and East Coast salt marshes, we found 1) fewer species, 2) communities comprised of unique species combinations, 3) greatest mean densities in summer, and 4) potentially less productivity by the molluscs of our sites. These mollusc communities exhibit structural characteristics that emphasize the unique ecotonal nature of the oligohaline marshes within which they are found.  相似文献   

18.
Nineteen species of Diptera (16 in each zone) from seven families were found in monthly collections (June 1979 through May 1980) in two Mississippi marsh plant zones dominated byJuncus roemerianus Scheele andSpartina cynosuroides (L.) Roth, respectively. TheJuncus zone was dominated by a species ofPalpomyia-Bezzia complex, two species ofBezzia (Ceratopogonidae),Paratendipes sp.,Limnophyes sp. (Chironomidae) andThinophilus frontalis (Dolichopodidae).Palpomyia-Bezzia sp.,Culicoides hollensis, Ormosia sp. (Tipulidae) andPelastoneurus abbreviatus (Dolichopodidae) dominated theSpartina zone. Total inset density and species richness were lowest in June and July in both zones, corresponding to a pulse of adult emergence. Overall, total density was significantly higher in theSpartina zone with mean values of 165 and 245 insects m?2 for the {Juncus} and {Spartina} zones, respectively. In addition to total density, differences in abundance were apparent for a number of species between marsh zones. Patterns could be attributed to species-specific habitat preference., predation by aquatic predators, and/or by interactions of the infauna themselves.  相似文献   

19.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

20.
Salt marsh systems of the southeastern United States are characterized by extensive stands ofSpartina alterniflora. These marshes may influence the concentrations of material suspended in flooding and receding tidal waters. The ability of aSpartina alterniflora-dominated marsh to influence the concentration of suspended microbial biomass was investigated through the use of a 142-m long flume. The flume extended through stands of tall-, medium-, and short-heightSpartina. Water passing through the tallSpartina lost a considerable portion of microbial biomass. Initial samples from medium-heightSpartina were collected from water that had already passed through the tall grass. These samples contained 20 to 70% less microbial biomass than did water entering the tallSpartina. Calculations of mass transport suggest that the tallSpartina zone of marsh acts as a sink for microbial biomass while the short-heightSpartina tends to export biomass (to the tallSpartina zone). The marsh as a whole acts as a sink for microbial biomass. Transport estimates from 32 individual tide cycles were modeled to obtain an annual estimate of transport. As a consequence of high variability among individual transport estimates, no annual transport estimate could be distingushed from a net-zero transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号