首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary. Palaeomagnetic and isotopic results from the Kaoko lavas, Hoachanas basalts and dolerite sills of South-West Africa indicate that the Upper Triassic-Lower Jurassic Stormberg flows of South Africa may have extended into SW-Africa and that younger igneous events of Lower Cretaceous age were simultaneous with the Serra Geral volcanism in Brazil. Five analyses on three samples of the Keetmanshoop sills gave K-Ar ages between 178 ± 4 and 199 ± 4 Ma, four analyses of two samples of the Hoachanas basalts gave ages between 161 ± 3 and 173 ± 2 Ma and eight analyses of five samples of Kaoko basalt gave ages between 110±4 and 128 ± 2 Ma.
The components of remanent magnetization (RM) used to compute palaeomagnetic pole positions for the Kaoko lavas (48° N, 93° W, A95 = 3°) and for the Hoachanas basalts (61° N, 106° W, A95 = 7° are stable to alternating field (AF) and thermal demagnetization.
Correlation on a pre-drift map and on a map reconstructed for 112 Ma BP (before present) between the palaeomagnetic poles from the Kaoko and Serra Geral lavas suggests that the South Atlantic had not opened appreciably by 112 Ma BP. Cretaceous pole positions for S. America and Africa on a map reconstructed for 80 Ma BP are also discussed.  相似文献   

2.
Summary. Stable components of magnetization have been isolated in 15 lava flows (mean K-Ar age 123 ± 4 Myr) from the alkaline sequence outcropping at El Salto-Almafuerte, Province of Cordoba, Argentina. Magnetic and geologic stratigraphy, as well as K-Ar ages indicate that this sequence was probably extruded in the Lower Cretaceous during the first volcanic cycle of the Sierra de los Cóndores Group (Vulcanitas Cerro Colorado Formation).
The palaeomagnetic pole-position for El Salto-Almafuerte lava flows, computed from the mean of 15 virtual geomagnetic poles and denoted SAK7, is: 25° E, 72° S ( k = 35, α95= 6.5°); it is fairly close to other Lower Cretaceous palaeomagnetic poles for South America. The elongated distribution of Cretaceous palaeomagnetic poles suggest recurrent drift for South America in early Cretaceous time.
The palaeomagnetic and radiometric data for the igneous rocks from El Salto-Almafuerte support the magnetic reversal time-scale for the early Cretaceous suggested by oceanic magnetic lineations.  相似文献   

3.
Summary. Palaeomagnetic data from 71 hand samples of igneous rocks of Late Ordovician age exposed in western Argentina (31.3°S, 69.4°W, Alcaparrosa Formation) are given. Stable remanent magnetization was isolated in the majority of samples; they yield a palaeomagnetic pole at 56°S 33°E ( N = 8, α95= 16°). Whole rock K-Ar age determinations yield an age of 416 ± 10 Myr for a pillow lava of the Alcaparrosa Formation.
Palaeomagnetic data for South America, Africa, Australia, Antarctica and India suggest that Gondwana was a unit at least as far back as 1000 Myr. The palaeomagnetic data define a rapid polar migration for Gondwana in Ordovician time which is consistent with the widespread occurrences of Late Ordovician glacial deposits across this supercontinent.  相似文献   

4.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

5.
Summary. In this paper we present palaeomagnetic data from 87 hand samples collected in a sequence of tuffs and shales (Surf Formation) of Llanvirnian age, exposed in north-western Argentina (27° 47' S, 68° 06' W). After cleaning, the majority of samples showed reversed polarity and yielded a palaeomagnetic pole at 5.9° E, 8.5° S (α95= 5.9°). They also showed reversals of declination and inclination at the top of the sequence, which we have associated with geomagnetic excursions. Whole rock K—Ar age de-terminations suggest an age older than 416 ± 25 Myr for the Suri rocks. The predominant reversed stable remanence of these rocks is consistent with the reversed polarity reported for Early Llanvirnian rocks from USSR. The palaeomagnetic pole for the Suri Formation is consistent with the interpretation that Gondwana was a single unit in Early Palaeozoic times.
Palaeomagnetic data from 27 hand samples collected from 10 igneous units of Late Silurian—Early Devonian age (Ñuñorco Formation), exposed in the same area, are also given. The majority of the igneous units showed reversed polarity after cleaning. The positions of VGP's for the Ñuñorco igneous units are scattered and they are not used for geodynamic interpretations. Whole rock K—Ar age determinations suggest ages of 416 ± 25 and 360 ± 10 Myr for two igneous units of the Ñuñorco Formation.  相似文献   

6.
We present new palaeomagnetic and isotopic data from the southern Victoria Land region of the Transantarctic Mountains in East Antarctica that constrain the palaeogeographic position of this region during the Late Cambrian and Early Ordovician. A new pole has been determined from a dioritic intrusion at Killer Ridge (40Ar/39Ar biotite age of 499 ± 3 Ma) and hornblende diorite dykes at Mt. Loke (21°E, 7°S, A 95 = 8°, N = 6 VGPs). The new Killer Ridge/Mt. Loke pole is indistinguishable from Gondwana Late Cambrian and Early Ordovician poles. Previously reported palaeomagnetic poles from southern Victoria Land have new isotopic age constraints that place them in the Late Cambrian rather than the Early Ordovician. Based upon the new palaeomagnetic and isotopic data, new Gondwana Late Cambrian and Early Ordovician mean poles have been calculated.  相似文献   

7.
Summary. Thirty-six palaeomagnetic sampling sites distributed within 6000 m of dominantly andesitic flows and tuffs of Cretaceous age from the La Serena area, Chile confirm the normal polarity bias of the Cretaceous period. Af, thermal and limited chemical demagnetization techniques have been used in testing the stability of the remanent magnetization isolated in samples from these sites. A positive fold test in the Quebrada Marquesa Formation, the second lowest in the stratigraphic pile, confirms that the magnetization isolated is pre-Tertiary in age. Ages calculated by the K–Ar whole rock method however, appear to have been variably up-dated probably due to argon loss caused by Cretaceous–Tertiary intrusives. Thermal and hydrothermal effects of these intrusions have probably reset the magnetization in the youngest formation of the volcanic pile. A composite palaeomagnetic pole calculated from the 30 site poles of the three lower formations (209° E, 81° S, A95= 4½°), is in good agreement with mid to Late Cretaceous poles derived from rock units of the stable platform of South America. The use of Andean–Caribbean palaeomagnetic data however, to resolve small time-dependent polar shifts within the Cretaceous and thus to estimate the time of opening of the south Atlantic is questioned. Many of the Andean–Caribbean Cretaceous poles appear to have been affected by local tectonic rotation.  相似文献   

8.
Summary. In this paper we show that: (1) The positions of the Cretaceous palaeomagnetic poles (PP) for South America and Africa exhibit elongated distributions that are due to rapid movement of these continents from the south pole.
(2) The positions of the Middle—late Jurassic virtual geomagnetic poles for South America exhibit an elongated distribution along the meridians 20–200° E; it is suggested that this is due to a rapid shift of South America in Middle—late Jurassic time.
(3) The late early—early late Cretaceous sections of the apparent polar wandering paths for South America and Africa are consistent with South Atlantic seafloor spreading data.
On the basis of the comparison of the reliable late Palaeozoic—late Cretaceous PPs for South America and Africa, taking into account the restrictions established by geological, palaeontological and seafloor spreading data, it is suggested that minor movements could have occurred within Western Gondwana in middle—late Jurassic time along a narrow zone which later became the South Atlantic divergent boundary.
Four 'hairpins' are defined in the late Palaeozoic—late Cretaceous section of the apparent polar wandering path for South America; the two youngest of these can be correlated with the origin of the South Atlantic Ocean basin and the onset of the Andean Orogeny, respectively.
The magnetostratigraphy for the Serra Geral lava flow sequence suggests that some of these flows were poured out rapidly without significant interruption.  相似文献   

9.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

10.
Summary. From nine Upper Cretaceous—Lower Tertiary (85 ± 5–66 ± 5 Ma) volcanic hills in Central Argentina (33°S, 65°W), 26 hand samples were collected yielding a palaeomagnetic pole at 45°E 70°s ( A 95 = 12.1°; k = 13.6; N = 12) after AC cleaning. Three sites show normal and nine reversed polarity. This pole is close to the pole for the late Cretaceous (69 Ma) Andacolo Series.  相似文献   

11.
Measurements are described of the directions of remanent magnetization of 89 samples from nine lava flows and red beds. Stable remanent magnetization was isolated after AC demagnetizing. All the units have normal remanent magnetization, except one lava flow which yields a direction toward the north with positive inclination. From the mean direction of stable remanence, referred to the bedding, of each unit a virtual geomagnetic pole is computed; the mean of eight of these poles is 90·6 °E, 84·2° South, α95= 4·7° and represents the position of the palaeomagnetic pole for the exposures of the Sierra de Los Condores group from El Estrecho-Cerro Libertad. The position of this pole is reasonably close to the positions of the South American Lower Cretaceous palaeomagnetic poles for the Serra Geral and Vulcanitas Cerro Colorado formations and the trachybasaltic dykes from Rio Los Molinos. This supports the interpretations that the South Atlantic Ocean was formed in Lower Cretaceous times and that the Earth's magnetic field was on average similar to that of a geocentric dipole in South America in the Lower Cretaceous, and suggests that there has not been substantial relative movements between Central Argentina and Southern Brazil.  相似文献   

12.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   

13.
Remanence directions, measured at 2  cm intervals along a composite 88  m bore-core, enable mean palaeomagnetic poles to be defined at 13.6°S, 25.2°W and 13.6°N, 154.8°E. The directions of remanence vary very smoothly away from each palaeomagnetic pole, extending more than 90° from them. This raises doubts about the physical meaning of polarity definitions based on the distance between virtual and mean palaeomagnetic poles. For practical purposes, intermediate polarity is defined as directions whose virtual poles lie more than 25° from the mean pole, enabling at least five normal subchrons to be specified within the upper predominately reversed quarter of the core and 11 reversed subchrons within the lower predominantly normal three-quarters of the core. The stratigraphic thickness between these subchrons shows a very high linear correlation ( r >0.99) with the stratigraphic thickness of other terrestrial sequences and the distances between marine polarity sequences of comparable age. The analysed sequence contains wavelength spectra which, when transformed to the temporal realm, match periodicities determined for three marine magnetic anomaly profiles of similar age. These also match planetary orbital periodicities for the Cretaceous. These observations suggest that secular variations and polarity transitions are driven by common core processes whose surface expression is influenced by changes in the planetary orbits. Such detailed geomagnetic features enable far greater reliability in establishing magnetostratigraphic correlations and also enable them to be dated astronomically.  相似文献   

14.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

15.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

16.
Summary. Stable natural remanent magnetization (NRM) in the Jersey Volcanics and in a single rhyolite dyke was probably acquired during the Cambrian before folding of the volcanics in the Cadomian Orogeny. After dip correction, the volcanics yield a palaeomagnetic pole at 323° E, 52° N ( dp = 33°, dm = 35°). In Jersey dolerite dykes three groups of stable NRM directions are recognized, with palaeomagnetic poles at 248° E, 26° N ( dp = 10°, dm = 20°), 339° E, 1° S ( dp = 9°, dm = 12°), and 336° E, 31° S ( dp = 5°, dm = 9°). Comparison with the European apparent polar wander path implies that stable NRM in these groups was acquired respectively during Late Precambrian or early Cambrian, Siluro-Devonian and middle Carboniferous time. The stable NRM of the Jersey lamprophyre dykes yields a palaeomagnetic pole at 322° E, 16° N ( dp = 31°, dm = 38°) and is probably of Silurian or Devonian age.
These palaeomagnetic poles and other new data determined by the author for the Armorican Massif can be fitted to a common apparent polar wander path for Europe, and this implies that the basement of Lower Palaeozoic Europe extended from the Baltic Shield at least as far south as the Armorican Massif. The Hercynian Orogeny in these parts of Europe was therefore probably intracratonic. This polar wander path implies that in early Cambrian time the pole did not move significantly relative to Europe, but that this was followed by a large middle to late Cambrian polar shift which corresponded to rapid drift of Europe across the South Pole.  相似文献   

17.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

18.
Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R = 34.3° ± 6.9° for the early Aptian rock unit, R = 24.9° ± 10.6° for the middle Aptian, and R = −0.9° ± 11.8° for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.  相似文献   

19.
From a nunatak in central North Greenland (81.5°N, 44.7°W) nine sites of Middle Proterozoic basic dykes, cutting Archaean basement, were palaeomagnetically investigated. After AF and thermal cleaning the nine dyke sites and three adjacently baked gneiss sites give a stable characteristic remanent mean direction of D = 265°, I = 21.5° ( N = 12, α 95= 5.6°), the direction being confirmed by a detailed and positive baked contact test.
The polarity of the dykes in the nunatak area is opposite to that of the Zig-Zag Dal Basalts and the Midsommersø Dolerites in eastern North Greenland some 200–300 km away, the volcanics of which are assumed to be of similar age (about 1.25 Ga). The remanent directions of the two sets of data are antiparallel within the 95 per cent significance level of confidence.
When rotating Greenland 18° clockwise back to North America by the 'Bullard fit', the pole of the central North Greenland dolerites (NDL) falls at (14.3°N, 144.3°W). The reversed pole (14.3°S, 35.7°E) fits well on to the loop between 1.2 and 1.4 Ma on the apparent polar wander swath of Berger & York for cratonic North America.
The palaeomagnetic results from the Middle Proterozoic basic dykes from central North Greenland thus strengthen previous palaeomagnetic results from the Midsommersø Dolerites and Zig-Zag Dal Basalts from the Peary Land Region in eastern North Greenland, suggesting that Greenland was part of the North American craton at least for the period between c . 1.3 and 1 Ma (and probably up to the end of Cretaceous time). The major geographical meridian of Greenland was orientated approximately E–W, and the palaeo-latitude of Greenland was about 10°–15°.  相似文献   

20.
About six separately orientated cores were collected at each of 14 sites distributed throughout the arcuate, west-dipping, 6  km thick, Freetown layered igneous complex. Alternating field and thermal demagnetization both isolate a stable component of remanent magnetism which corresponds to a palaeomagnetic south pole from 13 sites (nine reverse, four normal polarity) at 82.9°S, +32.7°E ( α 95 = 5.6°). This is indistinguishable from that reported in 1971 based on alternating field demagnetization of cores from 10 orientated hand samples.
  The difference between the Freetown pole (age: 193 ± 3  Ma) and other mid-Jurassic poles from West Africa could be due to its greater age. The difference between the whole West African Jurassic pole group and the Karoo pole from southern Africa, however, suggests moderate (∼10°) differential rotation of West Africa relative to the Kaapvaal craton.
  A prevalent magnetic foliation fabric coincides generally with the petrological layering, as might be expected, but a ubiquitous magnetic lineation is predominantly down-dip. This is compatible with a down-dip pyroxene lineation reported to be present in some field outcrops, and interpreted in terms of late-stage deformation during the slow crystallization and cooling of the large igneous body. However, a fold test shows that the igneous layering had already achieved its present attitude before the Complex cooled to ∼570 °C (the maximum blocking temperature of the characteristic remanence).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号