首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have applied reactive transport simulations to evaluate conceptual models of hydrothermal fluid flow related to the Mesoproterozoic Mount Isa copper mineralisation. Numerical experiments have been performed specifically to investigate whether fluid flow was driven by mechanical deformation, higher than hydrostatic fluid pressure gradients, or thermal buoyancy, and what the mechanism of ore deposition was. One distinct feature of the Mount Isa mineralising system is a region of massive silica-rich alteration that surrounds the copper ore bodies within the Urquhart shale, indicating upward flow of a cooling fluid. Hydromechanical modelling revealed that contraction and horizontal shear can produce a dilation pattern that favours upward fluid flow, whereas strike slip movement causes dilation of pre-existing vertical structures. Reactive transport models show that hydraulic head driven flow is more likely to produce a more realistic silica alteration pattern than free thermal convection, but neither process generates a flow pattern capable of precipitating copper at the appropriate location. Instead we propose that gravity driven flow of a dense oxidised basin brine led to chalcopyrite mineralisation by fluid-rock reaction.  相似文献   

2.
Geothermal fields and hydrothermal mineral deposits are manifestations of the interaction between heat transfer and fluid flow in the Earth’s crust. Understanding the factors that drive fluid flow is essential for managing geothermal energy production and for understanding the genesis of hydrothermal mineral systems. We provide an overview of fluid flow drivers with a focus on flow driven by heat and hydraulic head. We show how numerical simulations can be used to compare the effect of different flow drivers on hydrothermal mineralisation. We explore the concepts of laminar flow in porous media (Darcy’s law) and the non-dimensional Rayleigh number (Ra) for free thermal convection in the context of fluid flow in hydrothermal systems in three dimensions. We compare models of free thermal convection to hydraulic head driven flow in relation to hydrothermal copper mineralisation at Mount Isa, Australia. Free thermal convection occurs if the permeability of the fault system results in Ra above the critical threshold, whereas a vertical head gradient results in an upward flow field.  相似文献   

3.
Hydrothermal systems are characterised by complex interactions between heat transfer, fluid flow, deformation, species transport and chemical reactions. Numerical models can provide quantitatively constrained information in regions where acquisition of new data is difficult or expensive thus providing a means for reducing risks, costs, and effort during targeting, production, and management of resources linked to hydrothermal systems. Here we show how numerical simulations of hydrothermal processes can be used to better understand coupled reactive transport in modern geothermal systems and in ancient hydrothermal ore deposits. We give examples based on the Enhanced Geothermal System at Soultz-sous-Forêts in France, hydrothermal mineralisation at Mount Isa in Australia, and the geothermal resource at Hamburg-Allermöhe in Germany.  相似文献   

4.
Rock deformation has an important effect on the spatial distribution and temporal evolution of permeability in the Earth’s crust. Hydromechanical coupling is of fundamental significance to natural fluid–rock interaction in porous and fractured hydrothermal systems, and in the assessment and production of hydrocarbon resources and geothermal energy. Shearing and fracturing of rocks can lead to the creation or destruction of permeability when fractures or faults form, or when existing structures are reactivated. Changes in stress orientation or fluid pressure can drive rock failure and create dilating fault zones that have the potential to focus fluid flow, or to breach seals above overpressured fluid compartments. Here, numerical models of deformation and fluid flow related to Mesoproterozoic copper mineralisation at Mount Isa, Australia, are presented that show how changes in deformation geometry in multiply deformed geological architectures relate to changes in dilation patterns, fluid pathways and flow geometry. Coupled numerical simulations of deformation and fluid flow can be useful tools to better understand structural control on fluid flow in hydrothermal mineral systems.  相似文献   

5.
We recently reported (Boudon et al., 1984) on an eruption similar to that of May 18, 1980 at Mount St. Helens, that took place about 3100 years ago at la Soufrière, Guadeloupe. During the course of detailed geological mapping of the deposits of this event, older debris flow and blast deposits were recognized in the northern sector of the mapped area. Uncarbonized wood fragments in the debris flow have yielded ages ca. 11,500 y. B.P. The deposits extend from an amphitheater crater westward to the caribbean shore about 10 km downslope from the volcano. The deposits and crater structure suggest that they are the result of catastrophic flank failure like the event 3100 years ago. Unlike the latter activity, however, no magmatic component is found in the deposits.  相似文献   

6.
A compilation of paleomagnetic data from volcanic deposits of Mount St. Helens is presented in this report. The database is used to determine signature paleomagnetic directions of products from its Holocene eruptive events, to assign sampled units to their proper eruptive period, and to begin the assembly of a much larger database of paleomagnetic directions from Holocene volcanic rocks in western North America. The paleomagnetic results from Mount St. Helens are mostly of high quality, and generally agree with the division of its volcanic deposits into eruptive episodes based on previous geologic mapping and radiocarbon dates. The Muddy River andesite's paleomagnetic direction, however, indicates that it is more likely part of the Pine Creek eruptive period rather than the Castle Creek period. In addition, the Two-Fingers andesite flow is more likely part of the Middle Kalama eruptive period and not part of the Goat Rocks period. The paleomagnetic data from Mount St. Helens and Mount Hood document variation in the geomagnetic field's pole position over the last ~2,500 years. A distinct feature of the new paleosecular variation (PSV) record, similar to the Fish Lake record (Oregon), indicates a sudden change from rapid clockwise movement of the pole about the Earth's spin axis to relatively slow counterclockwise movement at ~800 to 900 years B.P.  相似文献   

7.
Many volcanic edifices have a remarkably symmetric geometrical form. An example is Mount Fuji in Japan. We model this form assuming that the surface of the volcano is a surface of uniform hydraulic potential; that an erupting magma will follow the path of minimum resistance to the surface. In order to model the resistance to fluid flow we assume the volcanic edifice is a uniform porous medium. The vertical flow of magma is also resisted by the gravitational body force. If the volcano becomes too tall flank eruptions will widen it; if the volcano becomes too wide summit eruptions will increase its elevation. Using the Dupuit approximation for an unconfined aquifer it is shown that the percolation equation is applicable. As magma reaches the surface it is assumed to extend the solid, porous matrix. A similarity solution is obtained to this moving boundary problem. The solution predicts a uniform shape for all volcanoes. This shape is shown to be in excellent agreement with the geometrical form of Mount Fuji.  相似文献   

8.
Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic–mafic–felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization–differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier’s magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows.  相似文献   

9.
Hydrothermal circulation of seawater has been suggested as a mass transport mechanism for the formation of sulphide ore deposits in the ophiolitic rocks of Cyprus. Since ophiolitic sequences are generally regarded as fragments of oceanic crust and upper mantle, hydrothermal circulation of a form inferred from geological observations on Cyprus may be analogous to that thought to occur in oceanic crust at spreading ridges. The hypothesis that ore deposits were formed in ascending plumes of hot, buoyant fluid is examined by considering thermal convection in a permeable medium. To match the inferred pattern of circulation, finite amplitude convection in a cylindrical geometry is studied using finite difference approximations. These results combined with available geological and geochemical data are applied to understand better the physical controls on mineralisation.A simple model for the formation of the hydrothermal ore deposits of Cyprus is discussed. The model is semi-quantitatively reasonable in terms of vertical fluid flow rate, thermal structure, permeability and basal heat flow, and predicts volumes of maximum mineralisation similar to those observed. Three factors are identified which were important in confining mineralisation to a small volume immediately beneath the sea water/rock boundary: (1) hot fluid was confined to a narrow core zone of a rising plume, (2) the upward fluid flux was greatest in this same core zone, and (3) significant temperature decrease occurred within a thin surface boundary layer.  相似文献   

10.
Mount St. Helens has been a prolific source of tephra-fall deposits for about 40 000 years. These tephra deposits (1) record numerous explosive eruptions, (2) form important regional time-stratigraphic marker beds, and (3) record repeated changes in composition within and between eruptive periods.Recognized tephra strata record more than 100 explosive eruptive events at Mount St. Helens; those tephra strata are classified as beds, layers, and sets. Tephra sets, each of which consists of a group of beds and layers, define in part the nine eruptive periods recognized at the volcano. Individual tephra sets are distinguished from stratigraphically adjacent sets by differences in composition or by evidence of clapsed time.Several tephra units from Mount St. Helens form important marker beds at distances of hundreds of kilometers downwind from the volcano. Cummingtonite phenocrysts, which are known in ejecta from only Mount St. Helens in the Pacific Northwest, characterize some marker beds and readily identify their source.The tephra sequence also records eruption of the mafic andesites that mark the appearance of the modern Mount St. Helens and numerous changes in composition among dacite, basalt, and andesite since that time.  相似文献   

11.
The eruption of Mount Pinatubo in June 1991 altered the conditions of the surrounding river catchments. Pyroclastic flows and tephra fall were deposited over extensive areas, stripping off the forest cover and burying drainage divides. These recent deposits are very loosely consolidated and generally consist of sand‐sized particles, which commonly mobilize into lahars in response to rainfall of a certain magnitude. Several devastating lahar occurrences have buried settlements covering tens to several hundred square kilometres in a single event. Correlation of storm rainfall intensities and durations with lahar activity as recorded by acoustic flow monitors is used to investigate trends in the initiation conditions for lahar activity. This research confirms that the relationships of rainfall intensity and duration with lahar initiation threshold values are not linear but rather approximate a power relation. Different relations were found for lahar initiation in different years, from 1991 to 1997, as a result of the dynamic changes in hydrologic and geomorphic conditions of the affected catchments. Data from acoustic flow monitors are used to distinguish debris flow and hyperconcentrated flow activity from that of muddy water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Uranium deposits in sedimentary basins can be formed at various depths,from near surface to the basement.While many factors may have played a role in controlling the location of mineralization,examination of various examples in the world,coupled with numerical modeling of fluid flow,indicates that the hydrodynamic regime of a basin may have exerted a major control on the localization of uranium deposits.If a basin is strongly overpressured,due to rapid sedimentation,abundance of low-permeability sediments or generation of hydrocarbons,fluid flow is dominantly upward and uranium mineralization is likely limited at shallow depths.If a basin is moderately overpressured,upward moving fluids carrying reducing agents may meet downward moving,oxidizing,uranium-bearing fluids in the middle of the basin,forming uranium deposits at moderate depths.If a basin is weakly or not overpressured,either due to slow sedimentation or dominance of high-permeability lithologies,minor topographic disturbance or density variation may drive oxidizing fluids to the bottom of the basin,leaching uranium either from the basin or the basement,forming unconformity-type uranium deposits.It is therefore important to analyze the hydrodynamic regime of a basin in order to predict the most likely type and location of uranium deposits in the basin.  相似文献   

13.
Comprehensive studies, based on isotope geochemistry of C, H, O, S and Sr, chronology, common element and trace element geochemistry of fluid inclusions for the epithermal Au, As, Sb and Hg deposits in the Youjiang Basin and its peripheral areas, suggested that the ore fluid was the basin fluid with abundant metallic elements and the large-scale fluid flow of the same source in the late Yenshan stage was responsible for huge epithermal mineralization and silicification. The ore fluid flowed from the basin to the platform between the basin and the platform and migrated from the inter-platform basin to the isolated platform in the Youjiang Basin. The synsedimentary faults and paleokast surface acted respectively as main conduits for vertical and lateral fluid flow.  相似文献   

14.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

15.
Comprehensive studies, based on isotope geochemistry of C, H, O, S and Sr, chronology, common element and trace element geochemistry of fluid inclusions for the epithermal Au, As, Sb and Hg deposits in the Youjiang Basin and its peripheral areas, suggested that the ore fluid was the basin fluid with abundant metallic elements and the large-scale fluid flow of the same source in the late Yenshan stage was responsible for huge epithermal mineralization and silicification. The ore fluid flowed from the basin to the platform between the basin and the platform and migrated from the inter-platform basin to the isolated platform in the Youjiang Basin. The synsedimentary faults and paleokast surface acted respectively as main conduits for vertical and lateral fluid flow.  相似文献   

16.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

17.

Comprehensive studies, based on isotope geochemistry of C, H, O, S and Sr, chronology, common element and trace element geochemistry of fluid inclusions for the epithermal Au, As, Sb and Hg deposits in the Youjiang Basin and its peripheral areas, suggested that the ore fluid was the basin fluid with abundant metallic elements and the large-scale fluid flow of the same source in the late Yenshan stage was responsible for huge epithermal mineralization and silicification. The ore fluid flowed from the basin to the platform between the basin and the platform and migrated from the inter-platform basin to the isolated platform in the Youjiang Basin. The synsedimentary faults and paleokast surface acted respectively as main conduits for vertical and lateral fluid flow.

  相似文献   

18.
Various parameters of the internal structure of a debris-avalanche deposit from ancestral Mount Shasta (size and percentage of block facies in each exposure, number and width of jigsaw cracks, and number of rounded clasts in matrix facies) were measured in order to study flow and emplacement mechanisms. Three types of coherent blocks were identified: blocks of massive or brecciated lava flows or domes, blocks of layered volcaniclastic deposits, and blocks of accidental material, typically from sedimentary units underlying Shasta Valley. The mean maximum dimension of the three largest blocks of layered volcaniclastic material is 220 m, and that of the lava blocks, 110 m. This difference may reflect plastic deformation of blocks of layered volcaniclastic material; blocks of massive or brecciated volcanic rock deformated brittly and may have split into several smaller blocks. The blocks in the deposit are one order of magnitude larger, and the height of collapse 1100 m higher, than the Pungarehu debris-avalanche deposit at Mount Egmont, New Zealand, although the degree of fracturing is about the same.This suggests either that the Shasta source material was less broken, or that the intensity of any accompanying explosion was smaller at ancestral Mount Shasta. The Shasta debris-avalanche deposit covered the floor of a closed basin; the flanks of the basin may have retarded the opening of jigsaw cracks and the formation of stretched and deformed blocks such as those of the Pungarehu debris-avalanche deposit.  相似文献   

19.
Laboratory experiments are described which explore the dynamical consequences of buoyant convective upflow observed above hot pyroclastic flows. In nature, the convection is produced by the hot ash particles exchanging heat with air mixed into the front and top of the pyroclastic flow. This effect on the buoyancy due to the mixing of air and ash has been modelled in the laboratory using mixtures of methanol and ethylene glycol (MEG), which have a nonlinear density behaviour when mixed with water. Intermediate mixtures of these fluids can be denser than either initial component, and so the laboratory experiments were inverted models of the natural situation. We studied MEG flowing up under a sloping roof in a tank filled with water. The experiments were performed both in a narrow channel and on a laterally unconfined slope. The flow patterns were also compared with those of conventional gravity currents formed using fresh and salt water. The presence of the region of reversed buoyancy outside the layer flowing along the slope had two significant effects. First, it periodically protected the flow from direct mixing with the environment, resulting in pulses of relatively undiluted fluid moving out intermittently ahead of the main flow. Second, it produced a lateral inflow towards the axis of the current which kept the current confined to a narrow tongue, even on a wide slope.In pyroclastic flows the basal avalanche portion has a much larger density contrast with its surroundings than the laboratory flows. Calculations show that mixing of air into the dense part of a pyroclastic flow cannot generate a mixture that is buoyant in the atmosphere. However, the overlying dilute ash cloud can behave as a gravity current comparable in density contrast to the laboratory flows and can become buoyant, depending on the temperature and ash content. In the August 7th pyroclastic flow of Mount St. Helens, Hoblitt (1986) describes pulsations in the flow front, which are reminiscent of those observed in the experiments. As proposed by Hoblitt, the pulsations are caused by the ash cloud accelerating away from the front of the dense avalanche as a density current. The ash cloud then mixes with more air, becomes buoyant and lifts off the ground, allowing the avalanche to catch up with and move ahead of the cloud. The pulsing behaviour at the fronts of pyroclastic flows could account for the occurrence of cross-bedded layer 1 deposits which occur beneath layer 2 deposits in many sequences.  相似文献   

20.
Lithic-rich breccias are described from within a sequence of young (2000–3000 yrs B.P.) scoria and ash flow deposits erupted from Mount Misery and an older pumice and ash flow deposit (ignimbrite) on St. Kitts. Cross sections constructed through pyroclastic flow fans in well-exposed sea cliffs 4–6 km from the vent show that the lithic breccias are lensoid deposits which seem to occur as channel-shaped accumulations (up to > 20 m thick and > 150 m wide) within flow units. The best-developed example infills a deeply incised channel cut into older flow units. The coarsest lithic breccias are clast supported and fines depleted and grade laterally and vertically through finer-grained, matrix-supported breccias into scoria and ash flow deposits. Coarse scoria-concentration zones mainly occur at the tops of scoria and ash flow units but also at the bases, and gas-segregation pipes are common. The lithic breccias are a type of body-concentration deposit as they pass laterally into normal scoria and ash flow deposits and, where best developed, clearly occur above a reversely graded basal shear zone or layer. Grain-size studies indicate the lithic breccias and parent flows are strongly fines depleted and were highly fluidized. We suggest this may be a feature of many Lesser Antillean pyroclastic flows because of increased turbulence-induced fluidization resulting from a high degree of surface roughness caused by the steep (up to 40 °) irregular slopes, densely vegetated sinuous gullies of the tropical volcanoes, and ingestion and ignition of large amounts of lush vegetation. Accumulation of batches of lithics concentrated in the highly fluidized flows began at the break in slope where flows moved from gullies across hydraulic jumps onto the outer coastal flanks. The accumulations of breccias continued to move and be channelled down the central parts of the flows. Initially, on crossing onto the lower slopes, some of these flows seem to have had very powerfully erosive, nondepositional heads, and in the extreme example a deep channel as long as 1–2 km may have cut through underlying flow units at least as far as the present coastline. Much of the overriding remainder of the flow then drained away laterally. Thin, fine-grained ash flow deposits may form a marginal overbank facies to the pyroclastic flow fans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号