首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near bottom water samples and sediments were taken during five cruises to 6 stations forming a transect across the N.W. European Continental Margin at Goban Spur. Flow velocity spot measurements in the benthic boundary layer (BBL) always increased from the shelf to the upper slope (1470 m) from 5 to 9 cm s−1 in spring/summer and from 15 to 37 cm s−1 in autumn/winter. Decreasing values were detected at the lower slope (2000 m) and the lowest values of ca. 2 cm s−1 at the continental rise at 4500 m water depth. Long term measurements with a benthic lander at 1470 m show that currents have a tidal component and reach maximum velocities up to 20 cm s−1, sufficiently high periodically to resuspend and transport phytodetritus. During these long-term observations, currents were always weaker in spring/summer than in autumn/winter. Critical shear velocities of shelf/slope sediments increased with depth from 0.5 to 1.7 cm s−1 and major resuspension events and Intermediate Nepheloid Layers (INLs) should occur around 1000 m. Chloroplastic Pigment Equivalents (CPE) ranged from 0.0 to 0.21 μg dm−3, Particulate Organic Carbon (POC) from 12 to 141 μg dm−3 and Total Particulate Matter (TPM) from 0.2 to 10.0 mg dm−3. Aggregates in the BBL occurred with a median diameter of 152 to 468 μm. Data on suspended particulate matter in the near-bottom waters showed that hydrodynamic sorting within the particulate organic fraction occurred. Phytodetritus was packaged in relatively large aggregates and contributed little to the total organic carbon pool in nearbottom waters (CPE/POC ca.0.2%). The main organic fraction has low settling velocities and high residence times within the benthic boundary layer. As POC was not concentrated in the near bed region the degree to which carbon is accessible to the benthic community depends on aggregate formation, subsequent settling and/or biodeposition of the POC. Close to the sea bed downslope transport may dominate. Under flow conditions high enough to resuspend fresh phythodetritus from sediments at the productive shelf edge, this could be transported to 1500 m (Goban Spur) or abyssal depth (Canyon site between Meriadzek and Goban Spur) within 21 days.  相似文献   

2.
Determinations of Cu, Co, Ni and Cd were carried out on 39 samples of surface seawaters from the Ligurian Sea, nearshore and offshore, between the Isola Capraia and Imperia. The concentrations of trace elements have been established employing the analytical method suggested by Le Meur and Courtot-Coupez (1973), by means of concentration of the sample by chelating resin, solvent extraction of the eluate and then by quantitative determination by AAS. The results obtained with this technique probably refer to ionic forms of the elements only. The Co concentration was lower than 0.15 μg 1−1 in 32 samples, with an average of 0.49 μg 1−1 for the others. For Cd, the greater number of samples had a content lower than 0.05 μg 1−1. For the others the mean concentration was 0.13 μg 1−1. The Ni had a mean concentration of 0.93 μg 1−1 and the average Cu content was 1.43 μg 1−1. Our data are in agreement with the values published by authors who have employed the same analytical technique. We observed that the offshore samples present a concentration lower than that in the nearshore samples.  相似文献   

3.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

4.
In June/July 1994 a study was made of a small bloom of the coccolithophorid Emiliania huxleyi in an area of the North Sea to the east of the Shetland Islands. Observations on the hydrography of the study area indicated the bloom was associated with Atlantic water and was confined to an area in which a stable shallow mixed layer had formed. There was no evidence to suggest association of horizontal physical structure with the bloom development. High cell densities of >1– cells dm−3, together with low concentrations of PIC (<50 μg dm−3) and detached liths (2– liths cm−3) indicated that the bloom was studied at an early stage of development. Biochemical and physiological observations indicated active growth was taking place. The results presented are discussed in comparison with previous studies carried out in both oceanic and shelf seas.  相似文献   

5.
Inorganic phosphorus dynamics were investigated with the use of 32P in the hypertrophic Comacchio lagoons (NE Adriatic) during an extremely dense, quasi-permanent bloom of picocyanobacteria. Concentrations of dissolved inorganic phosphate (DIP) in waters of the blooming lagoons were usually near the detection limit (0.01 μmoles·dm−3). DIP uptake rates by microplankton at near-ambient concentrations (0.01 to 0.1 μmoles·dm−3) were in the range of 9.6 to 16.1 nmoles P·dm−3·min−1, and turnover times were 1.5 to 3 min. The turnover time was >40 h in the eutrophic coastal waters of the adjacent Adriatic Sea. The uptake rate of DIP depended on its initial concentration. In water samples artificially enriched with DIP, the uptake rate rose to its maximum of 0.10 to 0.13 μmoles P·dm−3·min−1 (or 6 to 7 μmoles·dm−3·h−1) when the initial concentration of DIP was elevated to 10 to 20 μmoles·dm−3. The potential capacity of microplankton in the water samples to consume and retain DIP was estimated at 25 μmoles·dm−3. Specific features are discussed of phosphorus metabolism in the anthropogenically transformed lagoon ecosystem with an anomalous food web with few animals.  相似文献   

6.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

7.
The organic matter released by the marine phytoplankton species Dunaliella tertiolecta and its physico-chemical interaction with cadmium and copper ions were studied by electrochemical methods (differential pulse anodic stripping voltammetry (DPASV) and a.c. polarography). The interactions with cadmium and copper were studied at the model interface (mercury electrodesolution) and in the bulk phase by measuring the complexing ability of the released organic material.The axenic cultures were grown on different growth media, without and with trace metals and chelators. Culture media were analyzed 10 days after inoculation, containing 5 × 105−1.2 × 106 cells cm−3 when untreated or after separation of cells by gentle centrifugation.It was found that the content and type of the released surface-active material and complexing ligands depend on the initial composition of the growth media. In all cases, strong interaction of excreted organic substances with copper in the bulk phase and with cadmium at the model interface were observed.A rather high value of the complexing capacity, 9.5 × 10−7 mol Cu2+ dm−3, was found in the culture grown on medium without trace metals and chelators (medium I) whereas the surface activity of this culture was not high (0.2 mg dm−3 equivalent to Triton-X-100). Higher contents of surface-active material (0.8 and 1.0 mg dm−3) were found in cultures grown in media with trace metals and without chelators (II and III), accompanied by a high content of complexing ligands (5.8 × 10−7 and 9.5 × 10−7 mol Cu2+ dm−3). However, if the complexing capacity is calculated per cell the values obtained for cultures grown in media II and III (0.79 × 10−15 and 0.98 × 10−15 mol Cu2+ dm−3) are lower than for cultures grown on medium I (1.8 × 10−15 mol Cu2− dm−3). The exceptional adsorption effects and the copper complexing capacity for medium 1, and the presence of cells with degenerative symptoms can be ascribed to stressed growth conditions, and, particularly, to deficiency of metals. A qualitatively similar behaviour has been observed in natural samples of estuarine waters, indicating the existence of stressed conditions during the mixing of fresh and saline waters.  相似文献   

8.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

9.
Sediment characteristics, sediment respiration (oxygen uptake and sulphate reduction) and sediment–water nutrient exchange, in conjunction with water column structure and phytoplankton biomass were measured at five stations across the western Irish Sea front in August 2000. The transition from thermally stratified (surface to bottom temperature difference of 2.3 °C) to isothermal water (14.3 °C) occurred over a distance of 13 km. The influence of the front on phytoplankton biomass was limited to a small region of elevated near surface chlorophyll (2.23 mg m−3; 50% > biomass in mixed waters). The front clearly marked the boundary between depositional sediments (silt/clays) with elevated sediment pigment levels (≈60 mg m−2) on the western side, to pigment impoverished (<5 mg m−2) sand, through to coarse sand and shell fragments on the eastern side. Maximal rates of sedimentary respiration on the western stratified side of the front e.g. oxygen uptake S2 (852 μmol O2 m−2 h−1) and sulphate reduction at S1 (149 μmol SO42− m−2 h−1), coupled to significant efflux of nitrate and silicate at the western stations indicate closer benthic–pelagic coupling in the western Irish Sea. Whether this simply reflects the input of phytodetritus from the overlying water column or entrapment and settlement of pelagic production from other regions of the Irish Sea cannot yet be resolved.  相似文献   

10.
Data presented in this paper are part of an extensive investigation of the physics of cross-shelf water mass exchange in the north-east of New Zealand and its effect on biological processes. Levels of dissolved dimethylsulfide (DMS) were quantified in relation to physical processes and phytoplankton biomass. Measurements were made at three main sites over the north-east continental shelf of New Zealand's North Island during a current-driven upwelling event in late spring 1996 (October) and an oceanic surface water intrusion event in summer 1997 (January). DMS concentrations in the euphotic zone ranged between 0.4 and 12.9 nmol dm−3. Integrated water column DMS concentrations ranged from 33 to 173 μmol m−2 in late spring during the higher biomass (15–62 Chl-a mg m−2) month of October, and from 25 to 38 μmol m−2 in summer during the generally lower biomass (16–42 Chl-a mg m−2) month of January. We observed high levels of DMS in the surface waters at an Inner Shelf site in association with a Noctiluca scintillans bloom which is likely to have enhanced lysis of DMSP-producing algal cells during phagotrophy. Integrated DMS concentrations increased three-fold at a Mid Shelf site over a period of a week in conjunction with a doubling of algal biomass. A high correlation (r2=0.911, significant <0.001) of integrated DMS and chlorophyll-a concentrations for compiled data from all stations indicated that chlorophyll-a biomass may be a reasonable predictor of DMS in this region, even under highly variable hydrographic conditions. Integrated bacterial production was inversely correlated to DMS production, indicating active bacterial consumption of DMS and/or its precursor.  相似文献   

11.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

12.
Concentrations and sinking rates of particulate biogenic silica (BSi), chlorophyll a (chl a) and phaeopigments (phae) (< 3 μm, 3–10 μm, > 10 μm and total), as well as the abundances of the major phytoplankton species, were studied during September 1991 in the Eastern Laptev Sea and the lower Lena River (Siberian Arctic). The highest chl a concentrations were found in two major “new” production regimes of the study area: (1) a deep chl a maximum (5.8 mg chl a m−3) (formed by the diatom Chaetoceros socialis) at 30 m depth on the outer shelf of the northern Laptev Sea, and (2) in the Lena River, where the phytoplankton community was dominated by fresh water diatoms (1.5 to 4.5 mg chl a m−3). Elevated chl a concentrations were also found in the river plume phytoplankton community (dominated by brackish water diatoms), NE of the Lena delta. In the Laptev Sea, the low chl a (0.1 to 3 mg chl a m−3) and high phae concentrations (0.5 to 14 mg phae m−3) indicated that the phytoplankton community (dominated by picoplanktic algae and nanoflagellates) was already senescent and affected by grazing losses. Biogenic silica values were highest in the Lena River (4 to 17 μM) as compared to the low values found in the Laptev Sea (0.3 to 4 μM). The large chl a size fraction, phae and BSi in the Lena River samples revealed the highest measured sinking rates (1.4, 2.3, and 1.5 m d−1, respectively). The formation of a strong halocline, decreasing turbulence, and possible nutrient deficiency resulted in death, disintegration and rapid sedimentation of fresh water diatoms. This was accompanied by a decrease in the BSi concentration and growth of the picoplanktic size fraction (< 3 μm) in the estuarine mixing zone (Gulf of Buorkhaya). Only a minor part of BSi was bound to intact diatom cells (< 3%) in the surface layer, most of which being apparently associated with detrital particles. In the Lena River, approximately 12% of the total silica was bound to BSi fraction, yet elsewhere in the Laptev Sea and in the estuarine mixing zone the BSi:total silica ratio was ≤ 5%. Thus, the results reflected the successional stage of a late summer phytoplankton community, characterized by dominance of small autotrophs and patchy distribution of senescent diatoms no longer able to affect the relative high levels of dissolved silica supplied by the Lena River.  相似文献   

13.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   

14.
Neanthes arenaceodentata were exposed to 292, 146, 92 and 56 μg litre−1 Cu (measured) and control seawater after a 27-day pre-exposure to a sublethal concentration of Cu (10, 16 and 28 μg litre−1 and control) to determine if the worms increased their tolerance to Cu after the pre-treatment. The worms pre-exposed to 28 μg litre−1 Cu were significantly more resistant to Cu toxicity than control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the time to 50 % mortality at 92 μg litre−1 Cu was 18 and 11 days for worms pre-exposed to 28 μg litre−1 Cu and control conditions, respectively. The net rate of Cu uptake during the toxicity test was lower for worms pre-exposed to 28 μg litre−1 Cu than for the control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the net rate of Cu uptake at 292 μg litre−1 Cu by worms pre-exposed to 28 μg litre−1 Cu and control conditions was 42 and 102 μg g−1 day −1, respectively.  相似文献   

15.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

16.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

17.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   

18.
Size-fractionated seawater samples were collected from the Gulf of Maine to determine the fraction (fc/d) of total dissolved (< 1 μm) Cd, Cu, Ni and 234Th in the colloidal size range (1,000 nominal molecular weight, NMW, to 1 μm) using cross-flow filtration. Colloidal Cd, Cu and Ni represents < 1–7% of the total dissolved concentration in these shelf waters and increases with an increase in particle concentration. By comparison, results obtained for particle-reactive 234Th indicate that < 1–47% of total dissolved is associated with the colloidal size fraction. A revised relationship between the concentration of colloids (Cc) and suspended particles (Cp) is reported (log Cc = 0.66 log Cp −2.01 kg L−1) and used to examine the dependence of fc/d for these metals on the concentration of suspended particles for Cp = 0.01–100 mg L−1. Results indicate that a significant fraction (˜ 10–30%) of Cd, Cu, Ni and 234Th in the traditionally defined ‘dissolved’ fraction may exist in the colloidal size range in regions characterized by high particle concentrations (Cp > 1–10 mg L−1), such as in near-shore and estuarine waters.  相似文献   

19.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

20.
The contents of labile (acid-soluble) sulfides were determined in the upper layer of the bottom sediments at 80 stations of the Caucasian shelf of the Black Sea. The maximum values of this parameter were registered in the black oozes deposited in the zones of intense pollution in Gelendzhik and Tsemess bays and in the shelf areas adjacent to large health resort objects and to seaports. The contents of acid-soluble sulfides in the sediments mentioned ranged from 400 to 900 mg S/dm3 of wet ooze. In the zones of moderate pollution, they ranged from 200 to 400 mg S/dm3 of the sediment. The rate of the sulfate reduction was as high as 10–40 mg S/dm3 of wet sediment per day. The data obtained show that the accumulation of labile sulfides in the upper layer of the bottom sediments on the shelf is directly related to the anthropogenic pollution and constitutes one of its most hazardous environmental aftereffects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号