首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Crucian carp were exposed to three combinations of pH and inorganic aluminium concentrations for 25 days. Mortality, plasma chloride and haematocrit, and gill aluminium content were investigated. No mortality was observed in any of the three exposures. Crucian carp survived acidic Al-rich water (pH 5.17) with a high concentration of low-molecular weight inorganic Al species (242 µgl–1) for 25 days. These fish had lowered plasma chloride levels and high amounts of aluminium on their gills compared to fish exposed to acidic Al-poor water (pH 5.16 and 12 µgl–1 Ali) and control water (pH 6.29 and 4 µgl–1 Ali). Haematocrit was the same in all three exposures. Because aluminium was not acutely toxic to the anoxia tolerant crucian carp, the present results give support to the hypothesis that Al polymerization with subsequent hypoxia is of high importance for the mechanism of acute Al toxicity to fish.  相似文献   

2.
During the past two-three decades the water chemistry in southern Norway has recovered considerably from acidification. The biological response, however, has been more variable. Thus, it has become increasingly apparent that decades of acidification may have masked other restrictors to fish populations in this area. The current study compiles data on young brown trout (Salmo trutta) density and water chemistry from 16 sites in River Sira in southwestern Norway during 2003–2014. The water chemistry during late snowmelt period was highly dilute, having a median conductivity and Ca of 10.5 μS/cm and 0.42 mg/l, respectively (n = 208). The corresponding minimum values were 5.0 μS/cm and 0.15 mg/l. With a pH median value of 5.89, the water was only slightly acidic. No effect of pH on the density of young brown trout was found, suggesting that acidification is no longer a limiting factor. However, both conductivity in year n-1 and Ca in year n correlated significantly with the density of 1+ brown trout. Al in year n, and surprisingly Ca in year n-1, correlated negatively on their densities. We conclude that very dilute water chemistry during late snowmelt is a limiting factor for the recruitment of brown trout in the study river. This effect has probably existed in the past as well, but has been less apparent due to decades of severe acidification.  相似文献   

3.
Effluents from brown coal mines are frequently rich in iron, the water being red-brown in colour and turbid. For several years a fish farm in the Lusatia (Brandenburg, Germany) has used such mine effluents for rearing rainbow trout. The total iron content of this water varies between 5 and 10 mg/l with pH ranging from 6.7 to 7.4. Water turbidity is high with a transparency of 10 to 40 cm at the most due to the substantial ferric hydroxide concentrations. Until 1989 trout have been reared in net cages within concrete settling basins destined for settling the ferric hydroxide mud. The cages were stocked with fingerlings in autumn, reaching portion size in the spring of the following year. Specific growth rate was 0.98% per day, comparable to that of trout in another farm unpolluted by iron but stocked at higher densities. The results show that fingerling rainbow trout may live in water containing more than 5 mg/l total iron but in the absence of Fe2+. These concentrations of water-borne iron seem to have only a limited detrimental effect on fish growth and feed conversion and do not prevent trout culture in principle.  相似文献   

4.
 The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water–rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≈300  °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system. Received: 12 February 1997 / Accepted: 26 January 1998  相似文献   

5.
In a novel biomanipulation experiment salmonids were used as a tool to improve water quality. The manipulation was initiated in spring 2000 as a response to non-point sources of phosphorus in a drinking water reservoir in Saxony, Germany. Salmonids (brown trout, Salmo trutta forma lacustris) were chosen as predators as the reservoir has a large hypolimnic water body and surface temperatures rarely exceed 20 °C. The vertical distributions of prey fish and brown trout were analysed with a fleet of vertical gill nets set in the pelagic zone of the reservoir. Consumption of brown trout was estimated by means of a bioenergetic model and the diet analyses of the trout. While the dominant planktivore (roach, Rutilus rutilus) was caught almost exclusively in the epilimnion during the stratification period trout were caught mainly below a depth of 10 m. Diet analysis revealed that the trout performed vertical migrations to consume food in the epilimnic layer, as an important food component were adult terrestrial and aquatic insects. The amount of fish in the food increased strongly with the size of the brown trout. The consumption estimate suggested that the trout had consumed 2-3% of the total roach stock during the study period (May-November 2000) of the first year of biomanipulation. We conclude that in general salmonids are suitable for food-web manipulation in deep reservoirs, but the stocked fish should be as large as possible (> 300 mm) and the proportion of large trout (> 500 mm) should be as high as possible.  相似文献   

6.
7.
Marie A  Vengosh A 《Ground water》2001,39(2):240-248
One of the major problems in the lower Jordan Valley is the increasing salinization (i.e., chloride content) of local ground water. The high levels of salinity limit the utilization of ground water for both domestic and agriculture applications. This joint collaborative study evaluates the sources and mechanisms for salinization in the Jericho area. We employ diagnostic geochemical fingerprinting methods to trace the potential sources of the salinity in (1) the deep confined subaquifer system (K2) of Lower Cenomanian age; (2) the upper subaquifer system (K1) of Upper Cenomanian and Turonian ages; and (3) the shallow aquifer system (Q) of Plio-Pleistocene ages. The chemical composition of the saline ground water from the two Cenomanian subaquifers (K1 and K2) point to a single saline source with Na/Cl approximately 0.5 and Br/Cl approximately 7 x 10(-3). This composition is similar to that of thermal hypersaline spring that are found along the western shore of the Dead Sea (e.g., En Gedi thermal spring). We suggest that the increasing salinity in both K1 and K2 subaquifers is derived from mixing with deep-seated brines that flow through the Rift fault system. The salinization rate depends on the discharge volume of the fresh meteoric water in the Cenomanian Aquifer. In contrast, the chemical composition of ground water from the Plio-Pleistocene Aquifer shows a wide range of Cl- (100-2000 mg/L), Na/Cl (0.4-1.0), Br/Cl (2-6 x 10(-3)), and SO4/Cl (0.01-0.4) ratios. These variations, together with the high SO4(2-), K+, and NO3- concentrations, suggest that the salinity in the shallow aquifer is derived from the combination of (1) upconing of deep brines as reflected by low Na/Cl and high Br/Cl ratios; (2) leaching of salts from the Lisan Formation within the Plio-Pleistocene Aquifer, as suggested by the high SO4(2-) concentrations; and (3) anthropogenic contamination of agriculture return flow and sewage effluents with distinctive high K+ (80 mg/L) and NO3- (80 mg/l) contents and low Br/Cl ratios (2 x 10(-3)). Our data demonstrates that the chemical composition of salinized ground water can be used to delineate the sources of salinity and hence to establish the conceptual model for explaining salinization processes.  相似文献   

8.
Between 1999 and 2002, a former open-cast mine was filled with river water forming the recent Lake Goitsche. During filling initially acid water was neutralised. Phosphorus (P) imported from Mulde River was nearly completely removed from the water column by co-precipitation with iron (Fe) and aluminium (Al) and deposited in the sediment.During extremely high waters of the Mulde River in 2002, a dike breach facilitated a second high import of P into Lake Goitsche with suspended and dissolved matter. The analysis of total phosphorus (TP), however, showed that P again had been eliminated from the water body a few months after the flood event. Sediment investigations before filling with river water, during filling, and after the flood event were used to analyse the process of P immobilisation in a lake with acid mine drainage history.The ratios of Fe to soluble reactive P (SRP) of sediment pore water were up to three orders of magnitudes higher than in natural lakes and can serve as an indicator for potential internal P loading from sediments. The SRP concentrations at the oxic/anoxic boundary were near or below the limit of quantification (< 0.2 μmol/L). Fe and manganese (Mn) redox cycling were responsible for hindering P dissolution from sediment to lake water.Finally it can be stated, that the risk of eutrophication for such a lake seems to be low.  相似文献   

9.
10.
太湖水体氮、磷浓度演变趋势(1985-2015年)   总被引:11,自引:8,他引:3  
戴秀丽  钱佩琪  叶凉  宋挺 《湖泊科学》2016,28(5):935-943
分析了太湖水体氮、磷浓度1985-2015年的演变趋势.结果表明,近30年来,全太湖水体氮、磷指标总体呈先恶化、后好转的波动变化趋势.总氮(TN)浓度年均值在1.79~3.63 mg/L之间,30年平均值为2.62±0.03 mg/L,总磷(TP)浓度年均值在0.04~0.15 mg/L之间,30年平均值为0.086±0.001 mg/L,1996年全太湖TN (3.84 mg/L)和TP (0.15 mg/L)浓度年均值均达历史峰值.氮、磷逐月浓度变化情况显示,TN浓度呈明显季节性变化规律,最高值集中出现在3、4月,概率分别为67%和33%,最低值则分布在8、9、10、11月,概率分别为18%、41%、29%和12%,而TP浓度则没有明显的季节性变化规律.太湖各湖区水体氮、磷浓度变化空间异质性明显,西部水域和北部水域变化幅度大于东部水域、南部水域和湖心区.太湖水体氮、磷浓度的长期变化趋势显然和流域经济发展及各项环保管理措施的实施密切相关,同时也受到重大水情变化的影响.此外,在相对封闭的局部湖湾水体可以通过水利调度等综合治理措施短时期内改善氮、磷指标,但大太湖水质的改善任重而道远.  相似文献   

11.
Unionoid mussels are obligate parasites on one or more fish species. The objective was to compare growth and survival of encysted mussel larvae of the freshwater pearl mussel (Margaritifera margaritifera) on young-of-the-year (YOY) versus one-year old brown trout (Salmo trutta). YOY and one-year old trout from the Brattefors and Lärje Rivers, Sweden, were infested with mussel larvae from their home river. The mass-normalized encystment abundance was higher on YOY trout than on one-year old trout. The proportional decrease in mass-normalized encystment abundance was larger on YOY brown trout from the Brattefors River than on YOY brown trout from the Lärje River. Encystment per individual fish was higher on YOY trout than on one-year old trout from the Brattefors River, whereas this relationship was reversed for trout from the Lärje River. Larval growth was higher on YOY trout than on one-year old trout. There was a larger difference in larval growth between YOY trout and one-year old trout from the Brattefors River than on the brown trout from the Lärje River. The ability to use both YOY and older fish, such as in the Lärje River, may increase the reproduction potential of mussel populations, compared to a reduced ability to use more than one year class, such as in the Brattefors River. This may also affect the dispersal of mussels, as older brown trout often move and migrate to a higher degree within and between rivers. The dispersal potential of mussels may therefore be relatively high in the Lärje River, but low in the Brattefors River. In rivers where the mussels have to rely on YOY brown trout, it could be worth facilitating passage through migration obstacles for YOY brown trout. Infested YOY brown trout could be artificially re-distributed within rivers, to places with former mussel distributions. It could also be worth testing the suitability of brown trout of different age classes when starting breeding programs.  相似文献   

12.
Many of the unionoid mussel species are threatened, and to be able to develop strategies for effective conservation, one of the needs is to distinguish host fish species from non-host fish species using reliable methods. Margaritifera margaritifera lives as a parasite on brown trout (Salmo trutta) and/or Atlantic salmon (Salmo salar). The aim was to compare the reliability of two methods measuring the host specificity of M. margaritifera in two rivers that flow out into Skagerrak in the Atlantic Ocean. A second aim was to compare the time- and cost-efficiency of the two methods. The methods were (1) natural encystment abundances on fish in their native streams using electrofishing, and (2) encystment abundances from controlled artificial infestation in aquaria, on fish that were sacrificed. In both rivers, young-of-the-year (YOY), but not older brown trout, were naturally infested with relatively low loads of glochidia larvae, while the Atlantic salmon was not infested at all. When using artificial infestation, both YOY and older brown had encysted glochidia larvae on their gills, while glochidia larvae were not able to develop in Atlantic salmon at all. Here, the encystment was higher on the brown trout from the Lärje River, and older brown trout from the Lärje River did not seem to have as strong immunity response compared to older brown trout from the Brattefors River. In summary, brown trout is the only host fish for M. margaritifera in these rivers. Both methods can be used to discriminate between host fish species, but the method measuring natural encystment seems most time- and cost-efficient. In addition, natural encystment can be measured using a non-destructive photo-method, and is therefore suggested to be used when discriminating between host fish species for M. margaritifera.  相似文献   

13.
Dairying is an intensive form of agriculture influencing stream ecosystems worldwide via increased levels of nutrients, deposited fine sediment and other contaminants. However, it is not fully understood how dairy farming affects food supply for stream fish. We investigated relationships between dairy farming prevalence in the catchments of nine tributaries of a New Zealand river (0% to 79% of the catchment area) and fish and invertebrate communities. Streams were sampled four times at monthly intervals for brown trout density, fitness/growth-related trout response variables, native fish density, invertebrate community metrics as well as physical and chemical water quality variables. Densities of both brown trout and native fish declined as dairying increased, with no trout found in streams where dairy farms covered more than 50% of the catchment area. Increasing dairy farming prevalence was also associated with higher in-stream levels of dissolved nutrients and deposited fine sediment. These findings suggest that increasing the extent of dairy farming in New Zealand based on practices at the time of sampling results in less abundant and diverse fish communities.  相似文献   

14.
Large lakes enclosures were used to examine the influence of nutrient (P, N) enrichment and planktivorous fish (1 + yellow perch) predation on hypolimnetic oxygen depletion. Results were compared to similar data for lakes with high (Lake St. George) and low (Haynes Lake) abundances of planktivorous fish. In both the unfertilized and fertilized enclosures, fish predation on large cladocerans increased the biomasses of pico- and nanoplankton (0.2–20 µm), phytoplankton (chlorophyll a) and total phosphorus (TP), reduced sedimentation, water clarity, and hypolimnetic oxygen concentrations (AHO). Fertilized enclosures without fish had highest TP and sedimentation rates, but the AHO were low. The high planktivore lake had higher pico- and nanoplankton, higher chlorophyll a, reduced water clarity, and lower AHO than the low planktivore lake. Areal hypolimnetic oxygen depletion (AHOD) rates were strongly related with Secchi depth and plankton size-distribution (r 2 = 0.77, and 0.79, respectively), but not as strongly with TP, chlorophyll a, and sedimentation rates (r 2 = 0.25, 0.53, and 0.02, respectively). Such observations are useful in forming a generalized hypothesis that lakes with low planktivory and high water clarity have lower oxygen depletion because 1) plankton that are settling are larger and spend less time in the hypolimnetic water column before reaching the sediment, and therefore undergo less decomposition, and 2) the euphotic depth extends into the hypolimnion and production of oxygen can take place.  相似文献   

15.
16.
基于2010-2019年洪泽湖湖体水质逐月监测数据,筛选出影响湖体水质的主要污染物指标为总氮(TN)和总磷(TP);选取洪泽湖周边25条主要入湖河流和2条出湖河流在2019年10月2020年9月的监测数据,探讨河流外源性输入对不同湖体区域氮磷的影响及其水期变化规律.结果发现:①湖体TN、TP浓度长期居高不下,年均浓度范围分别在1.39~1.86、0.080~0.171 mg/L波动.主要入湖河流TN、TP时空平均浓度(1.92~5.70和0.114~0.181 mg/L),均高于同区域湖体(1.15~1.46和0.088~0.101 mg/L),其中北部入湖河流肖河、马化河和五河与临近湖区TN、TP浓度呈现显著正相关,是影响北部湖体TN、TP浓度的主要河流;南部入湖河流维桥河和高桥河是临近湖区非极端降雨期TN、TP的主要来源.②调水工程对湖体及入湖河流TN、TP浓度分布影响显著,调水期湖体沿调水方向TP浓度逐渐上升,TN浓度则呈现先降后升的趋势,南部入湖河流维桥河和高桥河TN浓度达到水期峰值,分别为10.69和9.90 mg/L.③极端降雨期入湖河流的TN、TP浓度显著高于其它水期,由于湖体对TN、TP的富集作用不同,TP浓度呈现中间高,四周低,而TN浓度呈现沿洪水流向逐渐降低的规律.  相似文献   

17.
The recent boom in shale gas development in the Marcellus Shale has increased interest in the methods to distinguish between naturally occurring methane in groundwater and stray methane associated with drilling and production operations. This study evaluates the relationship between natural methane occurrence and three principal environmental factors (groundwater redox state, water type, and topography) using two pre‐drill datasets of 132 samples from western Pennsylvania, Ohio, and West Virginia and 1417 samples from northeastern Pennsylvania. Higher natural methane concentrations in residential wells are strongly associated with reducing conditions characterized by low nitrate and low sulfate ([NO3?] < 0.5 mg/L; [SO42?] < 2.5 mg/L). However, no significant relationship exists between methane and iron [Fe(II)], which is traditionally considered an indicator of conditions that have progressed through iron reduction. As shown in previous studies, water type is significantly correlated with natural methane concentrations, where sodium (Na) ‐rich waters exhibit significantly higher (p<0.001) natural methane concentrations than calcium (Ca)‐rich waters. For water wells exhibiting Na‐rich waters and/or low nitrate and low sulfate conditions, valley locations are associated with higher methane concentrations than upland topography. Consequently, we identify three factors (“Low NO3? & SO42?” redox condition, Na‐rich water type, and valley location), which, in combination, offer strong predictive power regarding the natural occurrence of high methane concentrations. Samples exhibiting these three factors have a median methane concentration of 10,000 µg/L. These heuristic relationships may facilitate the design of pre‐drill monitoring programs and the subsequent evaluation of post‐drill monitoring results to help distinguish between naturally occurring methane and methane originating from anthropogenic sources or migration pathways.  相似文献   

18.
Mass-spectrometry with inductively coupled plasma was used to determine the element composition of 19 amphipod species, most of which are widespread in the stony littoral of Lake Baikal. Amphipod composition was found to be dominated by Ca > P ≥ S > K ≥ Na > Cl > Mg > Sr ≥ Br ≥ Si. The concentrations of all elements determined in amphipods is greater than the respective concentrations in water. The amphipods were found to concentrate P > Br > Cu > Zn > Cd to the greatest extent relative to the element composition of water and Br > P ≥ I > Ca > S > Cl ≥ As > Sr relative to that of the stone substrate. The concentrations of Cr, Mn, Fe, Co, Cu, Zn, As, Mo, Cd, Pb, and Hg in 2003–2006 in the amphipods of the stony littoral of Baikal was not greater than their concentrations in the amphipods from conventionally non-polluted or weakly polluted aquatic ecosystems. The obtained results can be used as background values in environmental monitoring.  相似文献   

19.
To assess risks of chemically-dispersed oil to marine organisms, oil concentrations in the water were simulated using a hypothetical spill accident in Tokyo Bay. Simulated oil concentrations were then compared with the short-term no-observed effect concentration (NOEC), 0.01 mg/L, obtained through toxicity tests using marine diatoms, amphipod and fish. Area of oil concentrations higher than the NOEC were compared with respect to use and non-use of dispersant. Results of the simulation show relatively faster dispersion near the mouth of the bay compared to its inner sections which is basically related to its stronger water currents. Interestingly, in the inner bay, a large area of chemically-dispersed oil has concentrations higher than the NOEC. It seems emulsifying oil by dispersant increases oil concentrations, which could lead to higher toxicity to aquatic organisms. When stronger winds occur, however, the difference in toxic areas between use and non-use of dispersant is quite small.  相似文献   

20.
Egypt has a fast-growing population rate of 2.5%/year; consequently, there is an increase in the water demand for living and launching different development plans. Meanwhile, there is intensive construction of several dams in the upstream Nile basin countries. Thus, it is necessary to search for new water resources to overcome the expected shortages of the Nile water supply by focusing on alternative groundwater resources. El-Gallaba Plain area is one of the most promising areas in the western desert of Egypt attaining the priority for new reclamation projects; however, its hydrogeological setting is not well understood. The present work aims at identifying the recharge potential of the groundwater aquifers in El-Gallaba Plain, as well as exploring the role of geologic structures as natural conduits, and evaluating the groundwater types, origin and distribution. The integration of hydrogeophysical studies (aero and land magnetic surveys, vertical electrical sounding), hydrochemical analyses and remote sensing were successfully used for assessing the groundwater development potential. The hydrogeophysical studies show a large graben bound aquifer with thickness exceeding 220 m. The hydrochemical results indicate the presence of three major water types; Na mix, Na Cl, Na Cl HCO3 with salinities ranging between 227 and 4324 mg/L. The aquifer receives little recharge from the western fractured calcareous plateau from past pluvial periods and scarce present flashfloods. There is no indication for recent recharge from Lake Nasser to the aquifer domain. Further modeling studies are essential for establishing sustainable abstraction levels from this aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号