首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Several X-ray binaries(XRBs) have been identified to be associated with supernova remnants(SNRs). Because of the short lifetimes of SNRs, this leaves them to be the youngest known XRBs.This small group of binaries provides valuable information on the formation of compact stars under the framework of massive binary evolution. In this paper we review the observational characteristics of these youngest XRBs and discuss their possible implications on the initial conditions of compact stars and their interaction with the companion stars.  相似文献   

2.
Stars inject energy into the interstellar medium (ISM) by radiation, stellar winds, and supernova explosions. This energy injection causes the ISM to be inhomogeneous, which in turn alters the manner in which the energy is transferred through the ISM. A significant fraction of the energy is injected by massive stars, which formHii regions in the ISM. The structure and evolution ofHii regions in a cloudy medium deffers significantly from that in a homogeneous one. The strong stellar winds produced by massive stars form bubbles in the ISM, and the structure of these bubbles is often dominated by the structure of theHii region in which they are embedded. Finally, when the star explodes as a supernova, the evolution and appearance of the resulting remnant is determined by the structure of the bubble andHii region formed by the star during its lifetime.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

3.
We present stellar evolution calculations for Population III stars for both single- and binary-star evolutions. Our models include 10- and  16.5-M  single stars and a  10-M  model star that undergoes an episode of accretion resulting in a final mass of  16.1 M  . For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late-stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single-star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near-solar heavy metal abundance stars and not including both the evolution and the supernova explosions in one work.  相似文献   

4.
We present deep Hα+[NII] narrowband imaging of FCC046 and FCC207, two dwarf ellipticals (dEs) in the Fornax Cluster. Although one does not expect much of an interstellar medium (ISM) to be present in dEs, FCC207 shows a central emission region, whereas FCC046 also contains fainter emission regions. The central emission can be explained as photo-ionization by post-AGB stars. Some of the emission clouds in FCC046 are resolved and have diameters of the order of 50-150 pc and Hα luminosities of 1030 W, comparable to supernova remnants (SNRs), pointing to recent star formation. Dwarfs like FCC046 could be the evolutionary link between normal, quiescent dEs and more vigorously starforming blue compact dwarfs (BCDs). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
对年轻超新星遗迹的射电观测有助于理解超新星遗迹的早期演化. 选取银河系最年轻的超新星遗迹\lk G1.9+0.3进行了研究. 收集了已有的射电流量密度测量, 转化到同一频率, 从而获得了G1.9+0.3的流量密度在过去近50 yr的演化. 发现流量密度在2008年之前几乎一直在增加, 随后开始减小, 流量密度达到峰值的年龄约为\lk 150--155 yr. 流量密度的增加可能由磁场放大或者粒子加速效率提高产生的高能电子增多导致. 根据流量密度到达峰值的年龄, 结合前人的数值模拟, 讨论了超新星抛射物的质量和超新星爆发释放的动能.  相似文献   

6.
Radio observations of young supernova remnants (SNRs) can shed light on the early evolution of SNRs. We selected G1.9+0.3 which is the youngest SNR in the Milky Way Galaxy for a study. We compiled the radio flux densities currently available and converted them to the same frequency, which leaves us the evolution of the flux density for the past nearly 50 years. We found that the flux density increased before 2008 and decreased afterwards, meaning the flux density reaching the maximum at an age of about 150–155 yr. We attributed the brightening of the SNR to the increase of either magnetic field or the accelerated high energy electrons. Based on the age at which the flux density reached the peak, combined with the previous numerical simulation, we discussed the ejecta mass of the supernova and kinetic energy released by the supernova explosion.  相似文献   

7.
The fast neutron capture process (the r-process) occurs in the neutron-rich circumstance. However its concrete physical environment is not very clear. With recent progress in observations, many extremely metal-poor halo stars have been discovered. They have two characteristics: one is the overabundance of fast neutron elements with the relative abundance consistent with that of the sun; the other is that fast neutron element contents in stars at the same metal abundance have a very large dispersion. This provides a particular way to study the origin of the r-process. Simulation was used to study the galaxy's evolution process and the resulting dispersion of fast neutron nuclide contents in stars. The model of galaxy evolution obtained in this way not only contains spontaneous star formation in the gas region, but also includes the star formation excited by the supernova explosion. It is shown from our results that the supernovae at the low mass end should be the place producing the fast neutron nuclides. In addition, it is also shown that the non-uniformity of the galaxy evolution caused by the supernova explosion is not enough to explain the observed dispersion of fast neutron element contents in halo stars. This problem should be further studied.  相似文献   

8.
During the last couple of decades of work on the  Σ– D   (radio surface brightness to diameter) relation for supernova remnants (SNRs), it has been generally accepted that no single  Σ– D   relation can be constructed for all SNRs. However, it may still be possible to construct the relations for some classes of SNRs. In our previous paper we analysed  Σ– D   relation(s) for remnants in the dense environments of molecular clouds. The aim of this paper is to examine, in the same context, a class of oxygen-rich SNRs, and to extend the analysis to remnants evolving in lower-density interstellar media, namely Balmer-dominated SNRs. We have obtained good relations with certain similarities to our previous findings – similarities that emphasize, again, the role of ambient density in the evolution of SNRs.  相似文献   

9.
In an effort better to calibrate the supernova rate of starburst galaxies as determined from near-infrared [Fe  ii ] features, we report on a [Fe  ii ] λ 1.644 μm line-imaging survey of a sample of 42 optically selected supernova remnants (SNRs) in M33. A wide range of [Fe  ii ] luminosities are observed within our sample (from less than 6 to 695 L). Our data suggest that the bright [Fe  ii ] SNRs are entering the radiative phase and that the density of the local interstellar medium (ISM) largely controls the amount of [Fe  ii ] emission. We derive the following relation between the [Fe  ii ] λ 1.644 μm line luminosity of radiative SNRs and the electronic density of the post-shock gas, n e: L [Fe  ii ]     (cm−3). We also find a correlation in our data between L [Fe  ii ] and the metallicity of the shock-heated gas, but the physical interpretation of this result remains inconclusive, as our data also show a correlation between the metallicity and n e. The dramatically higher level of [Fe  ii ] emission from SNRs in the central regions of starburst galaxies is most likely due to their dense environments, although metallicity effects might also be important. The typical [Fe  ii ]-emitting lifetime of a SNR in the central regions of starburst galaxies is found to be of the order of 104 yr. On the basis of these results, we provide a new empirical relation allowing the determination of the current supernova rate of starburst galaxies from their integrated near-infrared [Fe  ii ] luminosity.  相似文献   

10.
In this paper we briefly comment on the observational status of the possible physical association between unidentified EGRET sources and supernova remnants (SNRs) in our Galaxy. We draw upon recent results presented in the review by Torres et al. (2003), concerning molecular gas in the vicinity of all 19 SNRs found to be positionally coincident with EGRET sources at low Galactic latitudes. In addition, we present new results regarding the supernova remnant CTA 1. Our findings disfavor the possibility of a physical connection with the nearby (in projection) EGRET source. There remains possible, however, that the compact object produced in the supernova explosion be related with the observed γ-ray flux.  相似文献   

11.
Three different models have been proposed for LiBeB production bycosmic rays: the CRI model in which the cosmic rays areaccelerated out of an ISM of solar composition scaled withmetallicity; the CRS model in which cosmic rays with compositionsimilar to that of the current epoch cosmic rays are acceleratedout of fresh supernova ejecta; and the LECR model in which adistinct low energy component coexists with the postulated cosmicrays of the CRI model. These models are usually distinguished bytheir predictions concerning the evolution of the Be and Babundances. Here we emphasize the energetics which favor the CRSmodel. This model is also favored by observations showing that thebulk (80 to 90%) of all supernovae occur in hot, low densitysuperbubbles, where supernova shocks can accelerate the cosmicrays from supernova ejecta enriched matter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The present-day chemical and dynamical properties of the Milky Way are signatures of the Galaxy's formation and evolution. Using a self consistent chemodynamical evolution code we examine these properties within the currently favoured paradigm for galaxy formation – hierarchical clustering within a CDM cosmology. Our Tree N-body/Smoothed Particle Hydrodynamics code includes a self-consistent treatment of gravity, hydrodynamics, radiative cooling, star formation, supernova feedback and chemical enrichment. Two models are described which explore the role of small-scale density perturbations in driving the evolution of structure within the Milky Way. The relationship between metallicity and kinematics of halo stars are quantified and the implications for galaxy formation discussed. While high-eccentricity halo stars have previously been considered a signature of `rapid collapse', we suggest that many such stars may have come from recently accreted satellites. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Disks originating from supernova fallback have been suggested to surround young neutron stars. Interaction between the disk and the magnetic field of the neutron star may considerably influence the evolution of the star through the so called propeller effect. There are many controversies about the efficiency of the propeller mechanism proposed in the literature. We investigate the fallback disk-involved spin-down of young pulsars. By comparing the simulated and measured results of pulsar evolution, we present some possible constraints on the propeller torques exerted by the disks on neutron stars.  相似文献   

14.
15.
We present our recently developed 3-dimensional chemodynamical code for galaxy evolution. This code follows the evolution of different galactic components like stars, dark matter and different components of the interstellar medium (ISM), i.e. a diffuse gaseous phase and the molecular clouds. Stars and dark matter are treated as collisionless N-body systems. The ISM is numerically described by a smoothed particle hydrodynamics (SPH) approach for the diffuse gas and a sticky particle scheme for the molecular clouds. Additionally, the galactic components are coupled by several phase transitions like star formation, stellar death or condensation and evaporation processes within the ISM. As an example we show the dynamical and chemical evolution of a star forming dwarf galaxy with a total baryonic mass of 2 ċ 109 M. After a moderate collapse phase the stars and the molecular clouds follow an exponential radial distribution, whereas the diffuse gas shows a central depression as a result of stellar feedback. The metallicities of the galactic components behave quite differently with respect to their temporal evolution as well as their radial distribution. Especially, the ISM is at no stage well mixed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

16.
We explore the role of anisotropic thermal conduction on the evolution of supernova remnants (SNRs) through interstellar media with a range of densities via numerical simulations. We find that a remnant expanding in a dense environment can produce centre-bright hard X-ray emission within 20 kyr, and centre-bright soft X-ray emission within 60 kyr of the supernova event. In a more tenuous environment, the appearance of a centre-bright structure in hard X-rays is delayed until about 60 kyr. The soft X-ray emission from such a remnant may not become centre bright during its observable lifetime. This can explain the observations that show that mixed-morphology SNRs preferentially occur close to denser, molecular environments. Remnants expanding into denser environments tend to be smaller, making it easier for thermal conduction to make large changes in the temperatures of their hot gas bubbles. We show that the lower temperatures make it very favourable to use high-stage ions as diagnostics of the hot gas bubbles in SNRs. In particular, the distribution of O  viii transitions from shell bright at early epochs to centre bright at later epochs in the evolution of an SNR expanding in a dense interstellar medium when the physics of thermal conduction is included.  相似文献   

17.
This paper reviews observations made over recent years that have led to the identification of many new galactic supernova remnants (SNRs) and have clarified the nature of several objects that had been thought to be SNRs. A revised reference catalogue of 155 galactic SNRs is presented, complete with notes on the newly identified remnants, those objects no longer thought to be SNRs, the questionable objects in the catalogue, and possible candidate SNRs. The selection effects applicable to the identification of galactic SNRs are discussed, with particular reference to the limitations that they impose upon statistical studies.  相似文献   

18.
We reviewed the recent progress in the field of stellar/galactic archeology, which is a study of the relics from the early galaxy. The oldest and most pristine objects that can be observed in the galaxy are the low mass metal poor stars of the Milky Way. They were formed during the early phases, when the ISM might have been polluted only by the Pop-III supernovae. With the recent large spectroscopic surveys (e.g. HK survey by Beers and collaborators, the Hamburg-ESO survey by Christlieb and collaborators and Sloan Digital Sky Survey) it has been possible to get clues on the nature of the first stars that has contributed to the heavy elements. Most of these metal-poor low mass stars also retain their signature of the early dynamical evolution of the galaxy, which can be studied through their orbits around the galaxy and spatial distribution. Here, we discuss the connection between the chemical and the kinematical properties of metal-poor stars in order to probe the early galaxy formation. We also discuss about the globular clusters, the satellite galaxies around the Milky Way and its possible contribution to the formation of the galaxy halo.  相似文献   

19.
Massive stars are of interest as progenitors of supernovae, i.e. neutron stars and black holes, which can be sources of gravitational waves. Recent population synthesis models can predict neutron star and gravitational wave observations but deal with a fixed supernova rate or an assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernova progenitors, i.e. with O‐ and early B‐type stars, and also all supergiants within 3 kpc. We restrict our sample to those massive stars detected both in 2MASS and observed by Hipparcos, i.e. only those stars with parallax and precise photometry. To determine the luminosities we calculated the extinctions from published multi‐colour photometry, spectral types, luminosity class, all corrected for multiplicity and recently revised Hipparcos distances. We use luminosities and temperatures to estimate the masses and ages of these stars using different models from different authors. Having estimated the luminosities of all our stars within 3 kpc, in particular for all O‐ and early B‐type stars, we have determined the median and mean luminosities for all spectral types for luminosity classes I, III, and V. Our luminosity values for supergiants deviate from earlier results: Previous work generally overestimates distances and luminosities compared to our data, this is likely due to Hipparcos parallaxes (generally more accurate and larger than previous ground‐based data) and the fact that many massive stars have recently been resolved into multiples of lower masses and luminosities. From luminosities and effective temperatures we derived masses and ages using mass tracks and isochrones from different authors. From masses and ages we estimated lifetimes and derived a lower limit for the supernova rate of ≈20 events/Myr averaged over the next 10 Myr within 600 pc from the sun. These data are then used to search for areas in the sky with higher likelihood for a supernova or gravitational wave event (like OB associations) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z = 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. The feedback of stars leads to turbulent motions and large-scale flows in the ISM. As one result the galactic disk is significantly enriched by chemical elements synthesized in bulge stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号