首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope ( HST ) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8σ significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with   M ZAMS= 15–18 M  . The progenitors of the other five SNe were below the 3σ detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to   M ZAMS < 12 M  . Analysis has been extended, from previous studies, to include possible detections of high- T eff, high-mass stars by conducting synthetic photometry of model Wolf–Rayet star spectra. The mass limits for the Type II-P SNe 1999an and 1999br are consistent with previously determined mass limits for this type of SN. The detection limits for the progenitors of the Type Ibc SNe (2000ds, 2000ew and 2001B) do not permit differentiation between high-mass Wolf–Rayet progenitors or low-mass progenitors in binaries.  相似文献   

2.
We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf–Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf–Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg.  相似文献   

3.
Long‐duration gamma‐ray bursts (GRBs) and type Ib/c supernovae (SNe Ib/c) are amongst nature's most magnificent explosions. While GRBs launch relativistic jets, SNe Ib/c are core‐collapse explosions whose progenitors have been stripped of their hydrogen and helium envelopes. Yet for over a decade, one of the key outstanding questions is what conditions lead to each kind of explosion in massive stars. Determining the fates of massive stars is not only a vibrant topic in itself, but also impacts using GRBs as star formation indicators over distances up to 13 billion light‐years and for mapping the chemical enrichment history of the universe. This article reviews a number of comprehensive observational studies that probe the progenitor environments, their metallicities and the explosion geometries of SN with and without GRBs, as well as the emerging field of SN environmental studies. Furthermore, it discusses SN2008D/XRT 080109 which was discovered serendipitously with the Swift satellite via its X‐ray emission from shock breakout and which generated great interest amongst both observers and theorists while illustrating a novel technique for stellar forensics. The article concludes with an outlook on how the most promising venues of research – with the many existing and upcoming large‐scale surveys such as PTF and LSST – will shed new light on the diverse deaths of massive stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova (SN) to have a directly confirmed red supergiant (RSG) progenitor. We compare SN 2003gd to SN 1999em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of   E ( B − V ) = 0.14 ± 0.06  , using three different methods. We also calculate three new distances to M74 of  9.6 ± 2.8, 7.7 ± 1.7  and  9.6 ± 2.2 Mpc  . The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of  9.3 ± 1.8 Mpc  . SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae (SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of  8+4−2 M  .  相似文献   

5.
Type Ia supernovae (SNe Ia) play an important role in astrophysics and are crucial for the studies of stellar evolution, galaxy evolution and cosmology. They are generally thought to be thermonuclear explosions of accreting carbon–oxygen white dwarfs (CO WDs) in close binaries, however, the nature of the mass donor star is still unclear. In this article, we review various progenitor models proposed in the past years and summarize many observational results that can be used to put constraints on the nature of their progenitors. We also discuss the origin of SN Ia diversity and the impacts of SN Ia progenitors on some fields. The currently favourable progenitor model is the single-degenerate (SD) model, in which the WD accretes material from a non-degenerate companion star. This model may explain the similarities of most SNe Ia. It has long been argued that the double-degenerate (DD) model, which involves the merger of two CO WDs, may lead to an accretion-induced collapse rather than a thermonuclear explosion. However, recent observations of a few SNe Ia seem to support the DD model, and this model can produce normal SN Ia explosion under certain conditions. Additionally, the sub-luminous SNe Ia may be explained by the sub-Chandrasekhar mass model. At present, it seems likely that more than one progenitor model, including some variants of the SD and DD models, may be required to explain the observed diversity of SNe Ia.  相似文献   

6.
A self-similar, hydrodynamic model is derived and used to generate SNe light-curves. It is found that the temporal development of the SN light-curve is governed by a ‘dynamic time’ parameter, and that the observed near-identical, normalized light-curves of Type Ia SNe suggest that they have evolved from progenitor stars of the same central density. Fitting the model parameters to observed Type Ia SNe light-curves suggests that the SNe have originated from the same mass progenitors. The model also provides a theoretical basis for the Phillips observation relating the absolute magnitude of the Type Ia SN to its half-width. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Distant Type Ia and II supernovae (SNe) can serve as valuable probes of the history of the cosmic expansion and star formation, and provide important information on their progenitor models. At present, however, there are few observational constraints on the abundance of SNe at high redshifts. A major science driver for the Next Generation Space Telescope is the study of such very distant SNe. In this paper we discuss strategies for finding and counting distant SNe by using repeat imaging of supercritical intermediate redshift clusters whose mass distributions are well constrained via modelling of strongly lensed features. For a variety of different models for the star formation history and supernova progenitors, we estimate the likelihood of detecting lensed SNe as a function of their redshift. In the case of a survey conducted with Hubble Space Telescope ( HST ), we predict a high probability of seeing a supernova in a single return visit with either Wide Field Planetary Camera 2 or Advanced Camera for Surveys, and a much higher probability of detecting examples with     in the lensed case. Most events would represent magnified SNe II at     and a fraction will be more distant examples. We discuss various ways to classify such events using ground-based infrared photometry. We demonstrate an application of the method using the HST archival data and discuss the case of a possible event found in the rich cluster AC 114     .  相似文献   

9.
Supersoft X‐ray sources have been proposed as one of the major channels to produce Type Ia supernovae (SNe Ia). However, the true nature of the progenitors has remained an unsolved problem. In this review I summarize the present status of our understanding of SN Ia progenitors, the main classes of progenitor models and recent observational constraints. At present, neither the single‐degenerate nor the double‐degenerate model can be ruled out, and indeed more than one channel may be required to explain the observed SN Ia diversity. Finally, I discuss the origin of the lightcurve peak – lightcurve width relation (the ‘Phillips relation’) and show that it is expected to depend on metallicity; this needs to be taken into account in high‐precision cosmological applications (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
GAIA is the 'super- Hipparcos ' satellite scheduled for launch in 2010 by the European Space Agency. It is a scanning satellite that carries out multi-colour, multi-epoch photometry on all objects brighter than 20th mag. We conduct detailed simulations of supernovae (SNe) detection by GAIA . Supernovae of each type are chosen according to the observed distributions of absolute magnitudes, and located in nearby galaxies according to the local large-scale structure. Using an extinction model of the Galaxy and the scanning law of the GAIA satellite, we calculate how many SNe are detectable as a function of the phase of the light curve. Our study shows that GAIA will report data on ∼21 400 SNe during the five-year mission lifetime, of which ∼14 300 are SNe Ia, ∼1400 are SNe Ib/c and ∼5700 are SNe II. Using the simulations, we estimate that the numbers caught before maximum are ∼6300 SNe Ia, ∼500 SNe Ib/c and ∼1700 SNe II. During the mission lifetime, GAIA will issue about 5 SNe alerts a day.
The most distant SNe accessible to GAIA are at a redshift   z ∼ 0.14  and so GAIA will provide a huge sample of local SNe. There will be many examples of the rarer subluminous events, over-luminous events, SNe Ib/c and SNe II-L. SNe rates will be found as a function of galaxy type, as well as extinction and position in the host galaxy. Amongst other applications, there may be about 26 SNe each year for which detection of gravitational waves is possible and about 180 SNe each year for which detection of gamma-rays is possible. GAIA 's astrometry will provide the SN position to better than milliarcseconds, offering opportunities for the identification of progenitors in nearby galaxies and for studying the spatial distribution of SNe of different types in galaxies.  相似文献   

11.
In the chemical evolution of the Galaxy, Type II supernovae (SNe II)have contributed to the early metal enrichment and later Type Iasupernovae (SNe Ia) have contributed to the delayed enrichment of Fe.In principle, hypothetical pre-galactic population III objects couldcause the earliest heavy element enrichment. Here we present our twonew findings. 1) The peculiar abundance pattern among iron peakelements (Cr, Mn, Co, and Fe) in the very metal poor can be reproducedwith SN II nucleosynthesis yields without invoking the contributionfrom Pop III objects. 2) The observed chemical evolution in the solarneighborhood is well reproduced with the metallicity dependentoccurrence of SNe Ia, where SNe Ia do not occur if the iron abundanceof the progenitors is as low as [Fe/H] ≲ -1. We make theprediction that the cosmic SN Ia rate drops at z ∼ 1-2 because ofthe low-iron abundance, which can be observed with the Next GenerationSpace Telescope. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
超新星在宇宙学中的应用   总被引:2,自引:0,他引:2  
对Ia超新星在宇宙学中的应用作了述评。蓝Ia超新星具有相对均匀的光谱、光变曲线及峰值光度,是较好的相对距离指示器。利用峰值光度同光变曲线形状或其它与距离无关的可观测量的关系可进一步将Ia超新星校准成精确的距离指示器。一旦它们的绝对光度得到标定,就可以定出哈勃常数H0。基于对邻近星系Ia超新星的理解,高红移Ia超新星的数据可对宇宙密度参数ΩM、ΩV及减速因子q0作出限制,并对膨胀宇宙的最终命运作出判  相似文献   

13.
14.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

15.
Supernova 1998bw holds the record for the most energetic Type Ic explosion, one of the brightest radio supernovae and probably the first supernova associated with a γ -ray burst. In this paper we present spectral observations of SN 1998bw observed in a cooperative monitoring campaign using the Anglo-Australian Telescope, the UK Schmidt Telescope and the Siding Springs Observatories 2.3-m telescope. We investigate the evolution of the spectrum between 7 and 94 d after V -band maximum in comparison with well-studied examples of Type Ic SNe in order to quantify the unusual properties of this supernova event. Though the early spectra differ greatly from observations of classical Ic supernovae (SNe), we find that the evolution from the photospheric to nebular phases is slow but otherwise typical. The spectra differ predominantly in the extensive line blending and blanketing which has been attributed to the high velocity of the ejecta. We find that by day 19, the absorption line minima blueshifts are 10–50 per cent higher than other SNe and on day 94 emission lines are 45 per cent broader, as expected if the progenitor had a massive envelope. However, it is difficult to explain the extent of line blanketing entirely by line broadening, and we argue that an additional contribution from other species is present, indicating unusual relative abundances or physical conditions in the envelope.  相似文献   

16.
HD49798 is a hydrogen depleted subdwarf 06 star and has an X-ray pulsating companion(RX J0648.0-4418).The X-ray pulsating companion is a massive white dwarf.Employing Eggleton's stellar evolution code with the optically thick wind assumption,we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova(SN Ia)in future evolution.This implies that the binary system is a likely candidate of an SN Ia progenitor.We also discuss the possibilities of some other WD+He star systems(e.g.V445 Pup and KPD1930+2752)for producing SNe Ia.  相似文献   

17.
Early-time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51) are reported. Photometric data suggest that SN 2005cs is a moderately underluminous Type II plateau SN (SN IIP). The SN was unusually blue at early epochs (   U − B ≈−0.9  about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He  i 5876-Å absorption component and, less clearly, of Hβ and Hα. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He  i components, or (more likely) be produced by different ions (N  ii , Si  ii ). Analogies with the low-luminosity, 56Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.  相似文献   

18.
The connection between long Gamma Ray Bursts (GRBs) and Supernovae (SNe) have been established through the well observed cases. These events can be explained as the prompt collapse to a black hole (BH) of the core of a massive star (M≳40M ). The energies of these GRB-SNe were much larger than those of typical SNe, thus these SNe are called Hypernovae (HNe). The case of SN 2006aj/GRB060218 appears different: the GRB was weak and soft, being called an X-Ray Flash (XRF); the SN is dimmer and has very weak oxygen lines. The explosion energy of SN 2006aj was smaller, as was the ejected mass. In our model, the progenitor star had a smaller mass than other GRB-SNe (M∼20M ), suggesting that a neutron star (NS) rather than a BH was formed. If the nascent NS was strongly magnetized as a magnetar and rapidly spinning, it may launch a weak GRB or an XRF. The peculiar light curve of Type Ib SN 2005bf may also be powered by a magnetar. The blue-shifted nebular emission lines of 2005bf indicate the unipolar explosion possibly related to standing accretion shock instability (SASI) associated with a newly born NS.  相似文献   

19.
We investigate the X-ray emission from the central regions of the prototypical starburst galaxy M82. Previous observations have shown a bright central X-ray point source, with suggestions as to its nature including a low-luminosity active galactic nucleus or an X-ray binary. A new analysis of ROSAT HRI observations finds four X-ray point sources in the central kiloparsec of M82, and we identify radio counterparts for the two brightest X-ray sources. The counterparts are probably young radio supernovae (SNe) and are amongst the most luminous and youthful SNe in M82. We therefore suggest that we are seeing X-ray emission from young SNe in M82, and in particular that the brightest X-ray source is associated with the radio source 41.95+57.5. We discuss the implications of these observations for the evolution of X-ray-luminous SNe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号