首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

2.
Zircons from 71 diverse rocks from the Qinling-Tongbai-Dabie-Sulu orogenic belt in east-central China and, for comparison, eight from adjoining areas in the South China and North China blocks, have been analyzed for in situ 18O/16O ratio and/or U–Pb age to further constrain the spatial distribution and genesis of Neoproterozoic low-δ 18O magmas, that is, δ 18O(zircon) ≤4 ‰ VSMOW. In many metaigneous rock samples from Tongbai-Dabie-Sulu, including high-pressure and ultrahigh-pressure eclogites and associated granitic orthogneisses, average δ 18O values for Neoproterozoic “igneous” zircon cores (i.e., 800–600 Ma) vary from ?0.9 to 6.9 ‰, and from ?9.9 to 6.8 ‰ for Triassic metamorphic rims (i.e., 245–200 Ma). The former extend to values lower than zircons in primitive magmas from the Earth’s mantle (ca. 5–6 ‰). The average Δ 18O (metamorphic zircon ? “igneous” zircon) values vary from ?11.6 to 0.9 ‰. The large volume of Neoproterozoic low-δ 18O igneous protoliths at Tongbai-Dabie-Sulu is matched only by the felsic volcanic rocks of the Snake River Plain hotspot track, which terminates at the Yellowstone Plateau. Hence, the low-δ 18O values at Tongbai-Dabie-Sulu are proposed to result from shallow subcaldera processes by comparison with Yellowstone, where repeated caldera-forming magmatism and hydrothermal alteration created similar low-δ 18O magmas. However, the possibility of involvement of meltwaters from local continental glaciations, rather than global Neoproterozoic glaciations, cannot be precluded. Our data indicate that Neoproterozoic low-δ 18O magmas that are either subduction- or rift-related are present locally along the western margin of the South China Block (e.g., Baoxing Complex). It appears that Neoproterozoic 18O-depletion events in the South China Block as the result of hydrothermal alteration and magmatism affected a much larger area than was previously recognized.  相似文献   

3.
We present and compare whole-rock and zircon O and Pb isotopic compositions for the Hannuoba granulite xenoliths and Mesozoic intermediate-to-felsic igneous rocks from the Zhangjiakou region, northern margin of the North China Craton, northeast China. The xenoliths have an overall Pb isotopic range similar to rocks from the regionally exposed Neoarchaean granulite terrain. Mesozoic zircons from different types of granulite xenoliths have a narrow range of δ18O values (6.0–7.7‰) higher than normal mantle δ18O values (~5.7‰). Mesozoic intermediate–felsic igneous rocks have O and Pb isotopic compositions indistinguishable from the Hannuoba intermediate–mafic granulite xenoliths. Our new data suggest that the Mesozoic igneous rocks and granulite xenoliths are genetically linked and that both were derived from the late Neoarchaean lower crust. This argues against previous proposals that the granulite xenoliths are either products of Mesozoic basaltic underplating or formed by mixing between mantle-derived and pre-existing crustal magmas.  相似文献   

4.
《Chemical Geology》2003,193(3-4):237-255
Oxygen isotope ratios were measured in olivines from eight São Miguel basalt lavas. With one exception (4.57‰), the olivines are indistinguishable from one another with an average δ18O of 4.92±0.03‰ (1σ). This value is slightly lower than that characteristic of upper mantle peridotite and MORB olivines (5.2±0.2‰). Assimilation of ≥10–20% of high-temperature altered lower oceanic crust or 4–9% hydrothermally altered volcanic edifice rocks could produce the low δ18O signatures in the São Miguel olivines; both of these assimilation models are permitted by the trace element and radiogenic isotope variations in the São Miguel basalts. However, the limited variation in δ18O despite eruption of the basalts through compositionally and tectonically variable lithosphere, and the lack of correlation of δ18O with olivine forsterite content, are more easily explained if the olivine δ18O signatures are inherited from their mantle source. If the δ18O signatures reflect mantle source compositions, then the relatively low and uniform δ18O signatures allow constraints to be placed on the origin of the mantle sources beneath São Miguel. Extreme variations in radiogenic isotope signatures have previously been attributed to two component source mixing between a predominant Azores plume source with mild HIMU-like characteristics, and an EMII-type mantle with very radiogenic Sr. The low δ18O signatures in the São Miguel basalt olivines suggest that the predominant Azores plume source contains >10% hydrothermally altered recycled oceanic crust. The limited variation in δ18O is consistent with a component of recycled sediment in the São Miguel EMII-type source, although, unlike the case for other EMII OIB (e.g. Samoa and Society), the relatively low δ18O signatures in São Miguel restrict any involvement of recycled sediment to <2% of a relatively low δ18O and very radiogenic Sr or high Rb/Sr sediment. Involvement of several percent metasomatized subcontinental lithospheric mantle could alternatively produce the EMII-type Sr–Nd–Pb isotope signatures without significantly affecting the plume-related low δ18O signatures. The São Miguel δ18O data are thus consistent with mixing between a low δ18O Azores plume source with a component of subducted, hydrothermally altered lower oceanic crust, and either minor recycled sediment or localized EMII-rich delaminated subcontinental lithospheric mantle. The latter could have been introduced into the lithosphere or shallow asthenosphere during opening of the Atlantic ocean basin.  相似文献   

5.
《Chemical Geology》2006,225(1-2):61-76
The boron geochemical cycle has been simulated using a time-dependent geochemical box model that was coupled to a one-dimension model of seawater–oceanic crust interactions. Boron elemental and isotopic compositions of oceanic rocks as a function of depth were calculated by mass balance, using the temperature and porosity profiles of the crust as well as the available experimental and empirical distribution coefficients and fractionation factors between mineral and water. Ranges of boron elemental and isotopic variations of seawater were calculated for crust–seawater interactions that take place from the ridge-axis to the off-axis closure of the hydrothermal system. The present-day δ11B of seawater (40‰) could represent a steady-state value. However, depending on crustal permeability, lifetime of water–rock interactions, and expansion rate of the oceanic ridge, the δ11B of seawater may vary from 30‰ to 50‰ at the 10 million year scale.Some boron isotope compositions of Cretaceous biogenic carbonates and ophiolitic serpentinites from Oman are comparable to modern rock samples, suggesting that the δ11B of Cretaceous seawater was close to the present-day value. Low δ11B values of some biogenic carbonates cannot be attributed to low pH values of past seawater, but more probably to δ11B variations of seawater or diagenetic alteration by crustal aqueous fluids. Boron isotope composition of hydrothermally altered serpentines could be considered as a promising proxy of the seawater composition.  相似文献   

6.
The In Ouzzal granulitic unit (IOGU) consists predominantly of felsic orthogneisses most of which correspond to granitoids emplaced during the Archaean, plus metasediments, including olivine-spinel marbles, of late Archaean age. All units were metamorphosed at granulite facies during the Eburnean (2 Ga). The stable isotope signature of the marbles (δ13C=–0.8 to –4.2‰/PDB; δ18O = 7.9 to 18.9‰/SMOW) does not record a massive streaming of C-bearing fluids during metamorphism. Most of the isotopic variation in the marbles is explained in terms of pregranulitic features. Metasomatic transformation of granulites into layered potassic syenitic rocks and emplacement of carbonate veins and breccias occurred during retrogressive granulite facies conditions. The chemistry of these rocks is comparable with that of fenites and carbonatites with high contents of (L)REEs, Th, U, F, C, Ba and Sr but, with respect to these elements, a relative depletion in Nb, Ta, Hf, Zr and Ti. The isotopic compositions of Nd (?Nd(T)=–6.3 to –9.9), of Sr (87Sr/86Sr(T)= 0.7093–0.7104), and the O isotopic composition of metasomatic clinopyroxene (δ18O = 6.9 to 8‰), all indicate that the fluid had a strong crustal imprint. On the basis of the C isotope ratios (δ13C =–3.5 to –9.7‰), the fluid responsible for the crystallization of carbonates and metasomatic alteration is thought to be derived from the mantle, presumably through degassing of mantle-derived magmas at depth. Intense interaction with the crust during the upward flow of the fluid may explain its chemical and isotopic signatures. The zones of metasomatic alteration in the In Ouzzal granulites may be the deep-seated equivalents of the zones of channelled circulation of carbonated fluids described at shallower levels in the crust.  相似文献   

7.
We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction and isotopic studies reveal that the carbonate minerals are mainly authigenic and they do not preserve any evidence for detrital carbonate and diagenesis. The isotope data show large fluctuations in the δ18O and δ13C values in the middle–late Eocene, indicating relatively warm and seasonal dry climate. The positive correlation of the δ18O and δ13C values in the Oligocene and the positive shift of the δ13C values from the Eocene to Oligocene suggest that the climate changed to arid in the Oligocene. However, the δ18O values show negative shift, which is closely related to the global cooling event. During the Miocene, the δ13C values vary between –2‰ and –4‰, whereas the δ18O values show continuous negative shift. The mean δ18O values decrease from –8.5‰ in the early Miocene to –10.0‰ in the late Miocene. The stable isotope-based paleoaltimetry results suggest that the elevation of the southwestern Qaidam basin was approximately 1500 m in the middle–late Eocene and Oligocene. Subsequently, during Miocene the crustal uplift process started and the elevation reached approximately 2000 m in the early Miocene and 2500 m in the late Miocene, which suggests large-scale growth of the northern Tibet Plateau during the Miocene.  相似文献   

8.
A relatively narrow range of oxygen isotopic ratios (?? 18O?=?5.0?C5.4??) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB), and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth??s mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1- to 2-Ga-old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e. HIMU, DMM, and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of ?? 18Oolivine values from 4.6 to 6.1?? was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle-derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni?×?FeO/MgO and ?? 18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from peridotite (HIMU-type component inherited its radiogenic isotope composition from ancient, ~1 to 2?Ga, recycled ocean crust) and pyroxenite (young, <1?Ga, recycled oceanic crust preserved as eclogite with depleted MORB-type isotopic signature) components of the Canary plume. The model calculations yield 5.2 and 5.9?±?0.3?? for peridotite- and pyroxenite-derived melts, respectively, which appeared to correspond closely to the worldwide HIMU-type OIB and upper limit N-MORB ?? 18O values. This difference together with the broad range of ?? 18O variations found in the Canarian olivines cannot be explained by thermodynamic effects of oxygen isotopic fractionation and are believed to represent true variations in the mantle, due to oceanic crust and continental lithosphere recycling.  相似文献   

9.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

10.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

11.
The sources and petrogenetic processes that generated some of the Earth’s oldest continental crust have been more tightly constrained via an integrated, in situ (U-Pb, O and Hf) isotopic approach. The minerals analysed were representative zircon from four Eoarchaean TTG tonalites and two felsic volcanic rocks, and olivine from one harzburgite/dunite of the Itsaq Gneiss Complex (IGC), southern West Greenland. The samples were carefully chosen from localities with least migmatisation, metasomatism and strain. Zircon was thoroughly characterized prior to analysis using cathodoluminescence, scanning electron, reflected and transmitted light imaging. The zircon from all but one sample showed only minor post-magmatic recrystallisation. 207Pb/206Pb dating of oscillatory-zoned zircon using SHRIMP RG (n = 142) indicates derivation of the felsic igneous rocks from different batches of magma at 3.88, 3.85, 3.81, 3.80 and 3.69 Ga.Analyses of 18O/16O compositions of olivine from a harzburgite/dunite (n = 8) using SHRIMP II in multi-collector mode, indicate that the oxygen isotopic composition of this sample of Eoarchaean mantle (δ18OOl = 6.0 ± 0.4‰) was slightly enriched in 18O, but not significantly different from that of the modern mantle. Zircon δ18O measurements from the six felsic rocks (n = 93) record mean or weighted mean compositions ranging from 4.9 ± 0.7‰ to 5.1 ± 0.4‰, with recrystallised domains showing no indication of oxygen isotopic exchange during younger tectonothermal events. δ18OZr compositions indicate that the primary magmas were largely in equilibrium with the mantle or mantle-derived melts generated at similar high temperatures, while calculated tonalite δ18OWR compositions (6.7-6.9‰) resemble those of modern adakites.LA-MC-ICPMS zircon 176Hf/177Hf analyses were obtained from six samples (n = 122). Five samples record weighted mean initial εHf compositions ranging from to 0.5 ± 0.6 to −0.1 ± 0.7 (calculated using λ176Lu = 1.867 × 10−11 yr−1), while one sample records a composition of 1.3 ± 0.7, indicating the magmas were generated from a reservoir with a time averaged, near chondritic Lu/Hf. The derivation of TTG magmas from a chondritic Lu/Hf source implies either that there was not voluminous continental crustal growth nor major mantle differentiation leading to Lu/Hf fractionation during the Hadean or Eoarchaean, or alternatively that rapid recycling of an early formed crust allowed the early mantle to maintain a chondritic Lu/Hf.Previous studies have demonstrated that ancient TTG rocks were mostly produced by dehydration melting of mafic rocks within the stability field of garnet, probably in flatly-subducted or buried oceanic crust. The oxygen isotopic signatures measured here at high spatial resolution allow the source materials to be better defined. Melting of a mixed mafic source consisting of ∼80% unaltered gabbro (δ18OWR = 5.5‰) with ∼20% hydrothermally altered gabbro/basalt (δ18OWR = 4.0‰) would produce tonalite magmas within the average compositional range observed. 18O-enriched components such as altered shallow basaltic oceanic crust and pelagic or continental sediments were not present in the sources of these TTG melts. The absence of high 18O signatures may indicate either the rarity of low temperature altered sediments, or their effective removal from the down-going slab.  相似文献   

12.
Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰ Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water. Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust.  相似文献   

13.
《China Geology》2022,5(3):457-474
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere’s counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.©2022 China Geology Editorial Office.  相似文献   

14.
《Applied Geochemistry》2000,15(7):937-952
The B isotopic composition, in combination with O and H isotopes and hydrochemical tracers, is utilized to constrain the evolution of basement-hosted groundwaters via water–rock interactions and fluid infiltration from external (sedimentary) reservoirs. Two distinct groundwater types have been identified in the Central European crystalline basement (N Switzerland–SW Germany): (1) fresh groundwaters characterized by low values of δ11B (−3.5 to −0.6‰), δ18O (−12.0 to −10.0‰), and δD (−86.8 to −71.9‰), and (2) brackish groundwaters with distinctly heavier B, O, and H isotopic compositions (δ11B=+6.4 to +17.6‰, δ18O=−9.4 to −5.6‰, δD=−67.6 to −60.8‰). Fresh groundwaters show a systematic decrease in δ11B, related to an increase in B concentrations (and degree of total mineralization), along the pathway of groundwater migration which can only be interpreted in terms of leaching of crystalline host rocks. A δ11B value of −3.3‰ is inferred for the crustal B source (mainly Hercynian granites) involved in the leaching process, in agreement with the known δ11B range of granitic rocks. The evolution of brackish groundwaters, derived from crystalline basement reservoirs with little water circulation, is more complex. As indicated by B–O–H stable isotope and hydrochemical (e.g. B/Cl, Na/Cl, and Br/Cl) constraints, brackish groundwaters from the study area are influenced by admixture of sediment-derived fluids which infiltrated from Late Paleozoic (Permo-Carboniferous) and Early Mesozoic (Lower Triassic) sedimentary strata. The data presented show that B isotopes are sensitive to mixing processes of fluids derived from different crustal reservoirs and, hence, may be utilized as a tracer for constraining the internal (autochthonous) vs external (allochthonous) origin of salinity in basement-hosted groundwaters.  相似文献   

15.
U–Pb dating and oxygen and Lu–Hf isotope analyses are applied to ~ 400 detrital zircon grains from the Neoproterozoic–Cambrian Kahar, Bayandor and Zaigun sandstones. The results reveal the evolutionary history of the Central Iranian continental crust in the northern margin of Gondwana during the Neoproterozoic–Cambrian. The U–Pb dating produces major peaks of crystallization ages at 0.5–0.7 Ga and minor peaks around the Tonian, Paleoproterozoic and Neoarchean. The zircon population in the Zaigun sandstone is dominated by long-transported grains and exhibits slightly different zircon distribution patterns than those from the older Kahar and Bayandor units. The zircon population ages and Hf isotopes of the Zaigun sample are very similar to the Neoproterozoic–Early Palaeozoic siliciclastic units in the Arabian Nubian shield (ANS) and Turkey, which suggests the late to post–Pan-African unroofing of the Afro–Arabia realm as the main process for detritus accumulation in Central Iran during the early Palaeozoic. A significant proportion of the Tonian-aged zircons (~ 64%) in the Kahar and Bayandor samples show positive εHf(t) values, whereas those with late Cryogenian–Ediacaran ages have high δ18O and variable εHf(t) values (~− 30‰ to + 17‰), suggesting that the crustal evolution of provenance of the Tonian-aged zircons commenced in an island arc setting and continued in an active continental margin. All the samples contain pre-Neoproterozoic zircons that are ca 1.9–2.3 Ga or 2.5–3.2 Ga, which are much older than the known Neoproterozoic igneous rocks in Iran and are more consistent with pre-Neoproterozoic igneous-metamorphic rocks in the eastern ANS and northern Africa. These ages support the eastern sector of the Afro–Arabia margin as a provenance for the detrital zircons in the oldest sedimentary sequences of Iran during the late Neoproterozoic–Cambrian. The Hf model ages of zircons with mantle-like δ18O values suggest that a significant amount of continental crust in the provenance of the detrital zircons was generated at around 1.0–2.0 and 3.0–3.5 Ga, likely by mantle-derived mafic magmas, and subsequently reworked during crustal differentiation into younger, more felsic crust with varying crustal residence times.  相似文献   

16.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

17.
《地学前缘(英文版)》2019,10(6):2063-2084
The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro,diorite and charnockite.U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca.580 Ma and 540 Ma and the Maevarano Suite to between ca.537 Ma and522 Ma.Major and trace element concentrations are consistent with emplacement in a syn-to postcollisional tectonic setting as A-type(anorogenic) suites.Oxygen(δ~(18)O of 5.27‰-7.45‰) and hafnium(ε_(Hf)(t) of-27.8 to-12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source.More primitive δ~(18)O(5.27‰-5.32‰) andε_(Hf)(t)(+0.0 to+0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust.The Hf isotopic composition of Malagasy zircon are unlike more juvenile Ediacaran-Cambrian zircon sou rces elsewhere in the East African Orogen and,as such,Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies.Taken together,these data indicate that high-T crustal anatexis,crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement.This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.  相似文献   

18.
The South Rogaland Complex (South Western Norway) consists of several anorthositic intrusions emplaced in granulite facies metamorphic rocks. The anorthosites and related norites and jotunites have δ 18O values of 5.2 to 7‰ suggesting a mantle origin for these rocks, in agreement with the strontium isotopic evidence. The acidic rocks, mostly charnockitic, associated with the anorthosites have similar δ 18O values and thus a comagmatic relation between these two rock types is inferred. Small departures from mantle values are explained in terms of crustal contamination by surrounding gneisses that have δ 18O values between 4.3 and 10‰ Locally, this corresponds to important anatexis as has been suggested for the Farsund charnockite on the basis of strontium isotope and REE geochemistry. The isotopic temperatures calculated from the isotopic fractionations are in the range 500°–700° C, lower than the orthomagmatic temperatures and probably due to subsolidus isotopic exchange during the slow cooling of these plutonic rocks, either during a late magmatic deuteric stage or during a slow, postorogenic ascent under wet conditions.  相似文献   

19.
New major and trace elemental, Sr–Nd–Pb isotope, and zircon U–Pb geochronological and Hf–O isotope data of post-collisional potassic and ultrapotassic volcanic rocks (PVRs and UPVs, respectively) along with geochemical data of PVRs, UPVs, and Mg-rich potassic rocks (MPRs) in the literature are used to constrain their mantle source and genesis. The PVRs, UPVs, and MPRs share similar geochemical features but with some discrepancies, suggesting that they were derived from subcontinental lithospheric mantle (SCLM) with isotopic heterogeneity resulting from the varying contributions of subducted Indian lower crust into the mantle source (ca. 6–20%, ca. 8–30%, and ca. 9–30%, respectively). The zircon Hf–O isotopic compositions of these rocks can be classified into two groups, including Group I rocks with high δ18O (6.7–11.3‰), low εHf(t) (− 17.0 to − 12.0), and old Hf crustal model ages (1.87–2.19 Ga) that indicate an ancient SCLM source, and Group II rocks with δ18O values of 6.8–10.7‰, εHf(t) values of − 11.8 to − 6.3, and younger Hf crustal model ages (1.50–1.86 Ga). The negative correlation defined by δ18O and εHf(t) of Group II samples suggests a two-component mixing between mantle- and crust-derived melts, in which the latter would be the subducted Indian lower crust as indicated by the similar negative εHf(t) values between Group II samples (− 11.8 to − 6.3) and the High Himalayan gneiss (− 14.2 to + 0.3). Thus we propose two enrichment events to account for the Hf–O isotopic compositions of the PVRs and UPVs/MPRs: the first involves the enrichment of the overlying SCLM that was metasomatized by fluids derived from dehydration of the subducted Indian lower crust, and the second invokes the enrichment of the overlying SCLM metasomatized by melts of the already dehydrated different proportions of the Indian lower crust. We argue that break-off of the northwards subducted Indian Plate in the early Miocene caused the asthenospheric upwelling under the Indian plate through slab window, resulting in varying degrees of partial melting of the overlying metasomatized heterogeneous SCLM to produce the primitive magmas of the PVRs, UPVs, and MPRs in an extensional setting. These observations and interpretations imply that the Indian lower crust was subducted beneath the Lhasa terrane in the Early–Middle Miocene.  相似文献   

20.
We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera-forming centers. The δ18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for δ18O(magma). Magmatic δ18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-δ18O basaltic magmas (sampling mantle to lower crustal high-δ18O sources), and low-δ18O silicic volcanism (sampling low-δ18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-δ18O magmas (+4 to 5‰). Most low-δ18O magmas are voluminous silicic ignimbrites related to large >10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. Low-δ18O magmas are not found among the less voluminous products of stratovolcano eruptions and these volcanoes do not show drastic changes in δ18O during their evolution. Additionally, high-δ18O(magma) of +6.0 to 7.5‰ are found among basalts and basaltic andesites of Bezymianny, Shiveluch, Avachinsky, and Koryaksky volcanoes, and dacites and rhyolites of Opala and Khangar volcanoes (7.1-8.0‰). Phenocrysts in volcanic rocks from the adjacent Kurile Islands (ignimbrites and lavas) define normal-δ18O magmas. The widespread and volumetric abundance of low-δ18O magmas in the large landmass of Kamchatka is possibly related to a combination of near-surface volcanic processes, the effects of the last glaciation on high-latitude meteoric waters, and extensive geyser and hydrothermal systems that are matched only by Iceland. Sr and Pb isotopic compositions of normal and low-δ18O, predominantly silicic, volcanic rocks show negative correlation with δ18O, similar to the trend in Iceland. This indicates that low-δ18O volcanic rocks are largely produced by remelting of older, more radiogenic, hydrothermally altered crust that suffered δ18O-depletion during >2 My-long Pleistocene glaciation. The regionally-distributed high-δ18O values for basic volcanism (ca. + 6 to +7.5‰) in Kamchatka cannot be solely explained by high-δ18O slab fluid or melt (± sediment) addition in the mantle, or local subduction of hydrated OIB-type crust of the Hawaii-Emperor chain. Overall, Nd-Pb isotope systematics are MORB-like. Voluminous basic volcanism (in the Central Kamchatka Depression in particular) requires regional, though perhaps patchy, remobilization of thick (30-45 km) Mesozoic-Miocene arc roots, possibly resulting from interaction with hot (ca. 1300°C), wedge-derived normal-δ18O, low-87Sr/86Sr basalts and from dehydration melting of lower crustal metabasalts, variably high in δ18O and 87Sr/86Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号