首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7 °C and HDD decreased by about 7.5%.Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr–1 over the period 1931 to 2002, and the SCVD advancedby 0.11 days yr–1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value <0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.  相似文献   

2.
Long-term observations for monitoring of the cryosphere   总被引:1,自引:0,他引:1  
John E. Walsh 《Climatic change》1995,31(2-4):369-394
Variations of the cryosphere over decadal-to-century timescales are assessed by a survey of data on sea ice, snow cover, glaciers and ice sheets, permafrost and lake ice. The recent variations are generally consistent across the different cryospheric variables, especially when placed into the context of variations of temperature and precipitation. The recent warming over northern land areas has been accompanied by a decrease of snow cover, particularly during spring; the retreat of mountain glaciers is, in an aggregate sense, compatible with the observed warming; permafrost extent and lake ice duration show similar variations in areas for which data are available. Corresponding trends are not apparent, however, in data for some regions such as eastern Canada, nor in hemispheric sea ice data, especially for winter. The data also suggest an increase of snowfall over high latitudes, including the Antarctic ice sheet.Estimates of both the climatic and the statistical significance of the recent variations are hampered by data inhomogeneities, the shortness of the records of many variables and the absence of central archives for data on several variables. The potential of monitoring by satellite remote sensing has been realized with several variables (extent of sea ice, snow cover). Other cryospheric variables (snow depth, ice sheet elevation, lake ice, mountain glaciers) may be amenable to routine monitoring by satellites pending advances in instrumentation, modifications of satellite orbit, and further developments in signal detection algorithms. The survey of recent variations leads to recommendations concerning the use of historical data,in situ measurements, and remote sensing applications in the monitoring of the cryosphere.  相似文献   

3.
Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters.  相似文献   

4.
Abstract

This study reports on the implementation of an interactive mixed‐layer/thermodynamic‐ice lake model coupled with the Canadian Regional Climate Model (CRCM). For this application the CRCM, which uses a grid mesh of 45 km on a polar stereographic projection, 10 vertical levels, and a timestep of 15 min, is nested with the second generation Canadian General Circulation Model (GCM) simulated output. A numerical simulation of the climate of eastern North America, including the Laurentian Great Lakes, is then performed in order to evaluate the coupled model. The lakes are represented by a “mixed layer” model to simulate the evolution of the surface water temperature, and a thermodynamic ice model to simulate evolution of the ice cover. The mixed‐layer depth is allowed to vary spatially. Lake‐ice leads are parametrized as a function of ice thickness based on observations. Results from a 5‐year integration show that the coupled CRCM/lake model is capable of simulating the seasonal evolution of surface temperature and ice cover in the Great Lakes. When compared with lake climatology, the simulated mean surface water temperature agrees within 0.12°C on average. The seasonal evolution of the lake‐ice cover is realistic but the model tends to underestimate the monthly mean ice concentration on average. The simulated winter lake‐induced precipitation is also shown, and snow accumulation patterns on downwind shores of the lakes are found to be realistic when compared with observations.  相似文献   

5.
In past 50 years, the air temperature fluctuation was raising trend in Tarim River Basin. The annual mean temperature has increased by 0.3℃ in the whole Tarim River Basin, and by 0.6℃ in the mountain areas. With global warming, the frequency of unstable and extreme climatic events increased, glaciers retreating accelerated and snow meltwater increased have resulted in the more frequency of snow-ice disasters such as glacier debrisflow and glacier flash flood etc. Since 1980s, in the process of intense climate warming, glaciers melting intensified, ice temperature rose and glaciers flows accelerated, and lead to more glacial lakes and extending water storage capacity and stronger glacial lake outburst floods occurrence. It is proposed that the monitoring and evaluating of the impact of climate change on water resources and floods should be enhanced.  相似文献   

6.
We investigate the temporal patterns in inter-annual variability in ice breakup dates for Lakes Mendota and Monona, Wisconsin, between 1905 and 2004. We analyze the contributions of long-term trends attributed to climate change, local weather, indices of sunspots, and large-scale climatic drivers, such as the North Atlantic Oscillation (NAO) and El Niňo Southern Ocean Index (ENSO) on time series of lake-ice breakup. The relative importance of the aforementioned explanatory variables was assessed using linear regression and variation partitioning models accounting for cyclic temporal dynamics as represented by Moran Eigenvector Maps (MEM). Model results explain an average of 58 % of the variation in ice breakup dates. A combination of the long-term linear trends, rain and snowfall in the month prior to breakup, air temperature in the winter prior to breakup, cyclic dynamics associated with sunspot numbers, ENSO, and for Lake Mendota, NAO, all significantly influence the timing of ice breakup. Significant cycle lengths were 3.5, 9, 11, and 50 years. Despite their proximity, Lakes Mendota and Monona exhibit differences in how and which explanatory variables were incorporated into the models. Our results indicate that lake ice dynamics are complex in both lakes and multiple interacting processes explain the residuals around the linear warming trends that characterize lake ice records.  相似文献   

7.
Changes in lake levels during the last 12000 years in eastern North America show spatially coherent patterns, implying climatic control. Conditions were generally wetter than today during the late glacial, becoming more arid towards 6000 years BP when most lakes were low. Lakes rose after 6000 years BP, reaching modern levels by about 3000 years BP. These palaeohydrological changes broadly agree with simulated changes in moisture balance derived from experiments with the NCAR Community Climate Model (Kutzbach and Guetter 1986) with changing orbital parameters and lower boundary conditions (sea-surface temperature and ice extent). However, the model simulates maximum aridity at 9000 years BP. Data and model show broadly similar spatial patterns, implying that the lake-level changes can be explained by the changing boundary conditions and their effects on atmospheric circulation. At 12000 years BP most lakes were high because of increased precipitation along the jet-stream storm-track south of the ice sheet. By 9000 years BP, with the much reduced ice sheet, many lakes along the eastern seaboard and in the southeast were lower than present because of greater evaporation due to high summer insolation. The warming of the continental interior generated an enhanced monsoon low in the southwest, causing increased southerly flow which helped to maintain higher lakes in the Midwest. Dry conditions spread eastwards across the Midwest between 9000 and 6000 years BP. This effect is not shown by the model, which continues to bring monsoonal precipitation into the Midwest while simulating enhanced westerly flow and drier conditions further to the west. Such displacements of circulation features are unimportant at the continental scale, but could be significant if general circulation models are used for regionalscale predictions of changes in the moisture balance.  相似文献   

8.
Many studies have shown that lake ice-out (break-up) dates in the Northern Hemisphere are useful indicators of late winter/early spring climate change. Trends in lake ice-out dates in New England, USA, were analyzed for 25, 50, 75, 100, 125, 150, and 175 year periods ending in 2008. More than 100 years of ice-out data were available for 19 of the 28 lakes in this study. The magnitude of trends over time depends on the length of the period considered. For the recent 25-year period, there was a mix of earlier and later ice-out dates. Lake ice-outs during the last 50 years became earlier by 1.8 days/decade (median change for all lakes with adequate data). This is a much higher rate than for longer historical periods; ice-outs became earlier by 0.6 days/decade during the last 75 years, 0.4 days/decade during the last 100 years, and 0.6 days/decade during the last 125 years. The significance of trends was assessed under the assumption of serial independence of historical ice-out dates and under the assumption of short and long term persistence. Hypolimnion dissolved oxygen (DO) levels are an important factor in lake eutrophication and coldwater fish survival. Based on historical data available at three lakes, 32 to 46 % of the interannual variability of late summer hypolimnion DO levels was related to ice-out dates; earlier ice-outs were associated with lower DO levels.  相似文献   

9.
To simulate effects of projected climate change on water temperature characteristics of small lakes in the contiguous U.S., a deterministic, one-dimensional year-round water temperature model is applied. In cold regions the model simulates ice and snow cover on a lake. The lake parameters required as model input are surface area, maximum depth, and Secchi depth as a measure of radiation attenuation and trophic state. The model is driven by daily weather data. Weather records from 209 stations in the contiguous U.S. for the period 1961–1979 were used to represent present climate conditions. The projected climate change owing to a doubling of atmospheric CO2 was obtained from the output of the Canadian Climate Center General Circulation Model. The simulated water temperature and ice characteristics are related to the geometric and trophic state lake characteristics and to geographic location. By interpolation, the sensitivity of lake water temperature characteristics to latitude, longitude, lake geometry and trophic status can therefore be quantified for small lakes in the contiguous U.S. The 2× CO2 climate scenario is projected to increase maximum and minimum lake surface temperatures by up to 5.2°C. (Maximum surface water temperatures in lakes near the northern and the southern border of the contiguous U.S. currently differ by up to 13°C.) Maximum temperature differences between lake surface and lake bottom are projected to increase in average by only 1 to 2°C after climate warming. The duration of seasonal summer stratification is projected to be up to 66 days longer under a 2×CO2 climate scenario. Water temperatures of less than 8°C are projected to occur on lake bottoms during a period which is on the order of 50 days shorter under a 2×CO2 climate scenario. With water temperature change projected to be as high as 5.2°C, ecological impacts such as shifts in species distributions and in fish habitat are most likely. Ice covers on lakes of northern regions would also be changed strongly.  相似文献   

10.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   

11.
A deterministic, one-dimensional model is presented to simulate daily water temperature profiles and associated ice and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface area (As), maximum depth (HMAX), and Secchi depth (zs), the latter, used as a measure of light attenuation and trophic state. The model is driven by daily weather data and operates year-round over multiple years. The model has been tested with extensive data (over 5,000 temperature points). Standard error between simulated and measured water temperatures is 1.4°C in the open water season and 0.5°C in the ice cover season. The model is applied to simulate the sensitivity of Minnesota lake water temperature characteristics to climate change. The projected climate changes due to a doubling of atmospheric CO2 are obtained from the output of the Canadian Climate Center General Circulation Model (CCC GCM) and the Goddard Institute of Space Studies General Circulation Model (GISS GCM). Simulated lake temperature characteristics have been plotted in a coordinate system with a lake geometry ratio (A s 0.25 /HMAX) on one axis and Secchi depth on the other. The lake geometry ratio expresses a lake's susceptibility to stratification. By interpolation, the sensitivity of lake temperature characteristics to changes of water depth and Secchi depth under the projected climate scenarios can therefore be obtained. Selected lake temperature characteristics simulated with past climate conditions (1961–1979) and with a projected 2 × CO2 climate scenario as input are presented herein in graphical form. The simulation results show that under the 2 × CO2 climate scenario ice formation is delayed and ice cover period is shortened. These changes cause water temperature modifications throughout the year.  相似文献   

12.
未来我国南方低温雨雪冰冻灾害变化的数值模拟   总被引:2,自引:0,他引:2  
 使用高分辨率区域气候模式(RegCM3),单向嵌套一个全球模式,对未来我国南方冰雪灾害在IPCC SRES A2情景下的变化进行了数值模拟。结果表明:未来南方地区低温日数整体将减少,但在广东和广西北部部分地区连续低温日数有增加现象;降雪日数和连续降雪日数会减少,但在江西等地降雪量将有所增加,同时强降雪事件在江西等地将增多,引起地面最大积雪深度和最大持续积雪日数的增加;湖南和贵州东部地区冻雨日数会减少,而在青藏高原东麓等地冻雨日数会增加。  相似文献   

13.
未来我国南方低温雨雪冰冻灾害变化的数值模拟   总被引:1,自引:0,他引:1  
使用高分辨率区域气候模式(RegCM3),单向嵌套一个全球模式,对未来我国南方冰雪灾害在IPCC SRES A2情景下的变化进行了数值模拟。结果表明:未来南方地区低温日数整体将减少,但在广东和广西北部部分地区连续低温日数有增加现象;降雪日数和连续降雪日数会减少,但在江西等地降雪量将有所增加,同时强降雪事件在江西等地将增多,引起地面最大积雪深度和最大持续积雪日数的增加;湖南和贵州东部地区冻雨日数会减少,而在青藏高原东麓等地冻雨日数会增加。  相似文献   

14.
我国强降雪气候特征及其变化   总被引:7,自引:2,他引:5       下载免费PDF全文
基于全国气象台站逐日地面降雪观测数据,对我国25°N以北不同气候区强降雪事件的地理分布和年内旬、月变化等气候特征进行分析,并探讨1961—2008年其时间序列演变特征,及1961—2008年和1981—2008年 (气候变暖后) 气候变化趋势。结果表明:强降雪量和强降雪日数在青藏高原东部、新疆和东北北部最多;强降雪强度高值中心出现在云南。东北北部、华北、西北、青藏高原东部强降雪事件多发生于初冬和初春,年内分布呈双峰型;新疆和黄淮地区年内分布呈单峰型,前者多发生在隆冬时节,后者多发生于晚冬;1961—2008年东北北部、新疆、青藏高原东部平均强降雪量和强降雪日数呈明显增加趋势;气候变暖后我国大部年强降雪量增多,强降雪日数增加,强降雪强度增强。  相似文献   

15.
Simulated variability and trends in Northern Hemisphere seasonal snow cover are analyzed in large ensembles of climate integrations of the National Center for Atmospheric Research’s Community Earth System Model. Two 40-member ensembles driven by historical radiative forcings are generated, one coupled to a dynamical ocean and the other driven by observed sea surface temperatures (SSTs) over the period 1981–2010. The simulations reproduce many aspects of the observed climatology and variability of snow cover extent as characterized by the NOAA snow chart climate data record. Major features of the simulated snow water equivalent (SWE) also agree with observations (GlobSnow Northern Hemisphere SWE data record), although with a lesser degree of fidelity. Ensemble spread in the climate response quantifies the impact of natural climate variability in the presence and absence of coupling to the ocean. Both coupled and uncoupled ensembles indicate an overall decrease in springtime snow cover that is consistent with observations, although springtime trends in most climate realizations are weaker than observed. In the coupled ensemble, a tendency towards excessive warming in wintertime leads to a strong wintertime snow cover loss that is not found in observations. The wintertime warming bias and snow cover reduction trends are reduced in the uncoupled ensemble with observed SSTs. Natural climate variability generates widely different regional patterns of snow trends across realizations; these patterns are related in an intuitive way to temperature, precipitation and circulation trends in individual realizations. In particular, regional snow loss over North America in individual realizations is strongly influenced by North Pacific SST trends (manifested as Pacific Decadal Oscillation variability) and by sea level pressure trends in the North Pacific/North Atlantic sectors.  相似文献   

16.
The Warming of Lake Tahoe   总被引:1,自引:0,他引:1  
Summary We investigated the effects of climate variability on the thermal structure of Lake Tahoe, California-Nevada, 1970–2002, and with principal components analysis and step-wise multiple regression, related the volume-weighed average lake temperature to trends in climate. We then used a 1-dimensional hydrodynamic model to show that the observed trends in the climatic forcing variables can reasonably explain the observed changes in the lake. Between 1970 and 2002, the volume-weighted mean temperature of the lake increased at an average rate of 0.015 C yr−1. Trends in the climatic drivers include 1) upward trends in maximum and minimum daily air temperature at Tahoe City; and 2) a slight upward trend in downward long-wave radiation. Changes in the thermal structure of the lake include 1) a long-term warming trend, with the highest rates near the surface and at 400 m; 2) an increase in the resistance of the lake to mixing and stratification, as measured by the Schmidt Stability and Birge Work; 3) a trend toward decreasing depth of the October thermocline. The long-term changes in the thermal structure of Lake Tahoe may interact with and exacerbate the well-documented trends in the lake's clarity and primary productivity.  相似文献   

17.
For the Cree First Nation communities of the eastern James Bay region in the Canadian Subarctic, local weather plays a key role in traditional subsistence activities. There is rising concern among the Cree about changes in inland ice conditions as they pose challenges to Cree livelihood, health and culture. Here we contrast Crees’ observations of inland ice conditions and long-term measurements obtained to foster interdisciplinary climate change research between scientists and Cree communities. We compiled qualitative observations of inland ice conditions and compared them with long-term measurements (> 25 years) of air temperature, precipitation and snow depth from three meteorological stations in the Cree territory. Cree hunters observed a weakening of lake ice cover (e.g., change in ice composition and structure, increased rain in winter). Trend analysis of long-term measurements showed a significant increase in mean autumn air temperature as well as in winter and autumn precipitation. By contrasting Cree hunters’ observations with climate data, we identified that an increase in fall and winter precipitation could be causing a weakening of inland ice through a change in its composition (i.e., snow ice instead of congelation ice). We conclude that Cree and scientific knowledge are complementary when investigating and understanding climate change in the Subarctic.  相似文献   

18.
Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10–40%), altered maximum snow depth (?5 ± 6 cm), and a shortened snow-season (?14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10–30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50–100% of total soil temperature variations.  相似文献   

19.
Snow is an important environmental factor in alpine ecosystems, which influences plant phenology, growth and species composition in various ways. With current climate warming, the snow-to-rain ratio is decreasing, and the timing of snowmelt advancing. In a 2-year field experiment above treeline in the Swiss Alps, we investigated how a substantial decrease in snow depth and an earlier snowmelt affect plant phenology, growth, and reproduction of the four most abundant dwarf-shrub species in an alpine tundra community. By advancing the timing when plants started their growing season and thus lost their winter frost hardiness, earlier snowmelt also changed the number of low-temperature events they experienced while frost sensitive. This seemed to outweigh the positive effects of a longer growing season and hence, aboveground growth was reduced after advanced snowmelt in three of the four species studied. Only Loiseleuria procumbens, a specialist of wind exposed sites with little snow, benefited from an advanced snowmelt. We conclude that changes in the snow cover can have a wide range of species-specific effects on alpine tundra plants. Thus, changes in winter climate and snow cover characteristics should be taken into account when predicting climate change effects on alpine ecosystems.  相似文献   

20.
The main portion of Tibetan Plateau has experienced statistically significant warming over the past 50 years, especially in cold seasons. This paper aims to identify and characterize the dynamics of inland lakes that located in the hinterland of Tibetan Plateau responding to climate change. We compared satellite imageries in late 1970s and early 1990s with recent to inventory and track changes in lakes after three decades of rising temperatures in the region. It showed warm and dry trend in climate with significant accelerated increasing annual mean temperature over the last 30 years, however, decreasing periodically annual precipitation and no obvious trend in potential evapotranspiration during the same period. Our analysis indicated widespread declines in inland lake??s abundance and area in the whole origin of the Yellow River and southeastern origin of the Yangtze River. In contrast, the western and northern origin of the Yangtze River revealed completely reverse change. The regional lake surface area decreased by 11,499 ha or 1.72% from the late 1970s to the early 1990s, and increased by 6,866 ha or 1.04% from the early 1990s to 2004. Shrinking inland lakes may become a common feature in the discontinuous permafrost regions as a consequence of warming climate and thawing permafrost. Furthermore, obvious expanding were found in continuous permafrost regions due to climate warming and glacier retreating. The results may provide information for the scientific recognition of the responding events to the climate change recorded by the inland lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号