首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用空心圆柱扭剪仪对干燥TJ-1模拟月壤试样进行了应力主轴固定的定向剪切试验及不同偏应力比时主应力方向的纯旋转试验。从应力-应变关系角度出发,研究主应力方向、偏应力比对其各向异性的影响,并探讨了上述因素对TJ-1模拟月壤非共轴性的影响。试验结果表明:主应力方向和偏应力比对TJ-1模拟月壤的各向异性均有显著影响;应力主轴旋转引起的非共轴现象比定向剪切时明显,且偏应力比较小时非共轴角随应力主轴旋转呈先减小后增加的趋势,偏应力比较大时非共轴角一直减小直至试样破坏时非共轴现象消失。上述成果可弥补干砂试样非共轴领域的研究空白,并可望为将来月球上基础设施的修建提供技术支持。  相似文献   

2.
传统的塑性位势理论隐含了应力主方向和塑性应变增量主方向共轴的假定,无法客观地描述主应力轴旋转过程中的非共轴现象。基于广义位势理论提出的拟弹性弹塑性本构模型,把总的塑性应变分解为满足弹性分解准则的拟弹性部分和符合传统塑性理论假设的纯塑性部分,分解后建立的模型更为合理和简便,同时又可以解决土的非共轴问题。通过单剪试验结果的验证表明,基于广义位势理论的拟弹性弹塑性模型的模拟效果较好,传统的弹塑性模型(共轴模型)模拟得到的主应力方向和塑性主应变增量方向保持共轴,而拟弹性弹塑性模型(非共轴模型)的模拟结果则能够合理地描述主应力轴旋转过程中的非共轴特性,结果更符合实际,从而为解决土的非共轴特性问题提供了一种有效的方法。  相似文献   

3.
In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c′ and φp′, are relevant to the binder content.  相似文献   

4.
Rotational shear is the type of loading path where samples are subjected to cyclic rotation of principal stress directions while the magnitudes of principal stresses are maintained constant. This paper presents results from an experimental investigation on the drained deformation behaviour of saturated sand in rotational shear conducted in a hollow cylinder apparatus. Two types of granular materials, Leighton Buzzard sand and glass beads are tested. A range of influential factors are investigated including the material density, the deviatoric stress level, and the intermediate principal stress. It is observed that the volumetric strain during rotational shear is mainly contractive and most of strains are generated during the first 20 cycles. The mechanical behaviour of sand under rotational shear is generally non-coaxial, i.e., there is no coincidence between the principal axes of stress and incremental strain, and the variation of the non-coaxiality shows a periodic trend during the tests. The stress ratio has a significant effect on soil response in rotational shear. The larger the stress ratio, the more contractive behaviour and the lower degree of non-coaxiality are induced. The test also demonstrates that the effect of the intermediate principal stress, material density and particle shape on the results is pronounced.  相似文献   

5.
沈扬  周建  龚晓南  刘汉龙 《岩土力学》2009,30(12):3720-3726
为反映真实工程条件下主应力轴旋转应力路径引起土体性状的变化,对杭州地区正常固结原状软黏土在固结不排水的主应力轴定向剪切和主应力轴单调旋转条件下的应力-应变关系进行试验研究。研究发现,不同主应力方向的定向剪切路径下,随主应力方向变化,试样中各应变发挥程度显著不同,但破坏时的临界八面体应变变化较为稳定,且当八面体应变达到5%时,强度发挥程度已接近甚至超过90%。若剪切过程中增加了主应力幅值不变的不排水主应力轴单调旋转应力路径,只要破坏时主应力方向一致,经历与未经历主应力轴旋转试样的临界应变分量接近,但主应力轴旋转会影响加载阶段试样主应力、主应变增量方向所表现出的不共轴性,并且此影响随旋转时剪应力水平的提高而趋于显著,即使在临界破坏状态下依然明显。试验结果表明,由于土体原生各向异性、黏塑性等性质的存在,并不适宜用相关联流动法则来分析主应力轴旋转条件下土体的应力-应变关系特征。  相似文献   

6.
In this paper, a solution is presented for evolution of probability density function (PDF) of elastic–plastic stress–strain relationship for material models with uncertain parameters. Developments in this paper are based on already derived general formulation presented in the companion paper. The solution presented is then specialized to a specific Drucker–Prager elastic–plastic material model. Three numerical problems are used to illustrate the developed solution. The stress–strain response (1D) is given as a PDF of stress as a function of strain. The presentation of the stress–strain response through the PDF differs significantly from the traditional presentation of such results, which are represented by a single, unique curve in stress–strain space. In addition to that the numerical solutions are verified against closed form solutions where available (elastic). In cases where the closed form solution does not exist (elastic–plastic), Monte Carlo simulations are used for verification.  相似文献   

7.
A modified multi-laminate model, to predict non-coaxiality in anisotropic sand, is proposed in this paper. The model can easily be extended to other geo-materials only with implementing some minor provisions. To consider anisotropy of sand, two ellipsoids are utilized to summarize shear and compressive stiffness of material in different directions. Damage concept is used to take into account degradation of material through loading procedure. Ellipsoid of rigidity factors is being changed in both size and dimension, under applied strain path. Variation of ellipsoids results in change of stiffness distribution over different planes. In other words, fabric evolution in material is considered through variation of ellipsoids of rigidity factors. A simple rule is proposed for shear stress-strain relationship in loading-unloading and reloading, which captures most of the natural characteristics of sand behavior. In multi-laminate models, depending on stiffness distribution over sampling planes, stress and strain are not coaxial essentially. To achieve better results, non-coaxiality of shear stress and strain on sampling planes is considered by applying vector field concept. Shear stress in different directions of a sampling plane is considered as a vector field. This field is obtained from strain field, considering shear stiffness in various orientations. The model parameters are calibrated using uniaxial compressive test data in different directions, with respect to bedding plane on an anisotropic sand sample. To investigate capability of the model to predict non-coaxiality, results of the model are compared to experimental results obtained from pure principal stress rotation. Ultimately, good accuracy is observed in results.  相似文献   

8.
The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests.  相似文献   

9.
This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane.  相似文献   

10.
Summary. This paper presents a model created by the author to predict stress–strain relationships for weak to strong carbonate rocks (σc < 100 MPa) exhibiting axial strains up to 1%. The stress–strain model based on Haldane’s distribution function (Haldane, 1919) relates the axial stress (or normalized axial stress) to the square of an exponential function where the exponent is axial strain. To obtain accurate stress–strain relationship over the whole pre-failure strain with the proposed stress–strain model, it is necessary to have only one datum point (peak axial stress and maximum axial strain at this peak stress). It is shown that the stress–strain relationships observed in laboratory compression tests on samples collected from six carbonate rock formations (chalk, dolomites and limestones) from different parts of Israel, agree well with the stress–strain prediction model proposed by the author.  相似文献   

11.
杨彦豪  周建  温晓贵  严佳佳 《岩土力学》2014,35(10):2861-2867
利用空心圆柱扭剪仪对杭州软黏土进行了一系列不排水试验,包括对原状软黏土在不同主应力方向上的定向剪切试验和主应力轴旋转试验以及对重塑软黏土的主应力轴旋转试验,主要研究不同应力路径下软黏土非共轴角的发展特性以及中主应力系数b、初始剪应力水平和次生各向异性对其非共轴特性的影响。试验结果表明,软黏土的非共轴特性虽与砂土存在相似之处,但又不尽相同。原状软黏土在定向剪切条件下的非共轴角均较小,并且与加载方向有关,然而受剪应变发展的影响,试样接近破坏时的非共轴角并不为0°;主应力轴旋转条件下,无论原状还是重塑黏土其非共轴角均随主应力方向角? 增加而循环波动变化,且周期约为90°;非共轴角基本随中主应力系数b的增加而减小,但这种影响并不十分显著;剪应力水平对非共轴角的大小和发展趋势均存在一定的影响。对于重塑土的试验表明,软黏土的非共轴特性并不完全由土体的初始各向异性所决定,次生各向异性的影响也很大。  相似文献   

12.
A stress–strain relationship within porous rock under anisotropic stress conditions is required for modeling coupled hydromechanical processes associated with a number of practical applications. In this study, a three-dimensional stress–strain relationship is proposed for porous rock under elastic and anisotropic stress conditions. This relationship is a macroscopic-scale approximation that uses a natural-strain-based Hooke’s law to describe deformation within a fraction of pores and an engineering-strain-based Hooke’s law to describe deformation within the other part. This new relationship is evaluated using data from a number of uniaxial and triaxial tests published in the literature. Based on this new stress–strain relationship, we also develop constitutive relationships among stress, strain, and related stress-dependent hydraulic/mechanical properties (such as compressibility, shear modulus, and porosity). These relationships are demonstrated to be consistent with experimental observations.  相似文献   

13.
田雨  姚仰平  罗汀 《岩土力学》2018,39(6):2035-2042
从发挥面的角度出发,分析论证各向异性是引起岩土材料出现非共轴现象的根本原因,得到与材料力学一致的结论。当共轭的两发挥面与沉积面的夹角不相等时,主应力面上将出现塑性应变增量的切向分量,所以塑性应变增量的主方向与应力的主方向非共轴。按照这一结论,对非共轴的数值模拟,也应当根据各向异性本构模型进行。为考虑各向异性影响新近提出的各向异性变换应力法,改变了各应力分量的相对大小,得到的各向异性变换应力张量与真实应力张量的主方向不一致,因此也能反映非共轴。利用各向异性变换应力法,能够在现有的弹塑性本构模型的框架下,描述土的非共轴现象。以各向异性UH模型为例,预测各种加载条件下的非共轴变形,验证了该方法的有效性。  相似文献   

14.
The paper reports on the results of theoretical and experimental investigations on the spontaneous formation of shear bands in sand bodies. The phenomenon is considered as a bifurcation problem. Consequently, material response and configuration-dependent loading determine the bifurcation mode. Both Coulomb's and Roscoe's solutions of inclination of the shear band can be correct theoretically and experimentally. The first one holds for non-rotating stress axes, the second one for co-rotating stress and strain increment axes during failure. Values in between can occur if the rotation of principal stress axes is not equal to one of these limits. If Coulomb's inclination of shear band occurs, there is a thin deforming material layer separating rigid bodies. Inside the shear band non-coaxiality of strain increment and stress holds from the beginning. If Roscoe's inclination of shear band occurs, it is separating two deforming bodies. Inside the shear band strain increment and stress are coaxial at peak.  相似文献   

15.
In this paper, the Discrete Element Method (DEM) is employed to numerically explore the response of hollow cylinder specimens of granular soils under complex stress paths. Two series of numerical tests are conducted to clarify the effects of the principal stress direction α and the intermediate principal stress through the b-value on the mechanical response of granular materials. The effects of α and b-value on the non-coaxiality of the principal stress and the principal plastic strain increment directions are investigated. It is observed that b-value and α significantly affect the non-coaxial behavior of granular materials. Finally, the results are discussed and compared with those obtained from physical laboratory tests.  相似文献   

16.
基于临界状态模型的砂土非共轴本构模拟   总被引:1,自引:0,他引:1  
扈萍  茂松  马少坤  秦会来 《岩土力学》2011,32(Z1):230-235
传统的砂土本构理论隐含了应力和塑性应变率的共轴条件,无法客观描述主应力轴旋转试验中的非共轴现象,并且当密度和围压变化较大时也不适用。基于材料状态相关砂土临界状态概念,将Pietruszczak和Stolle所提出的砂土本构模型进行了改进,并在模型中引入非共轴塑性流动理论来描述非共轴现象。通过对单剪试验和空心圆柱试验进行数值模拟,表明基于临界状态理论的非共轴模型能够合理描述主应力轴旋转过程中砂土的非共轴变形特性  相似文献   

17.
A Drucker-Prager J 2 multi-surface-plasticity sand model is modified to employ the Lade-Duncan failure criterion as the yield function. This function includes the first and third stress invariants to account for the dependence of cyclic shear stress–strain behavior on confining pressure and the Lode angle. Related modifications to the flow rule and hardening rule are described. Dependence of dilatancy on confinement is also included. Salient features of the model performance are presented under general three-dimensional (3D) loading conditions, where the yield function provides a more accurate representation of nonlinear shear response. Dynamic response analyses of a mildly inclined infinite slope are performed to illustrate the influence of excitation direction on the accumulation of liquefaction-induced lateral ground deformation.  相似文献   

18.
中主应力对饱和松砂不排水单调剪切特性的影响   总被引:7,自引:0,他引:7  
利用土工静力-动力液压-三轴扭转多功能剪切仪,针对相对密度为30 %的福建标准砂,在不排水条件下控制主应力方向、中主应力系数、平均主应力保持不变,进行了单调剪切试验。以此着重探讨了中主应力系数对相变有效内摩擦角、峰值有效内摩擦角及有效应力路径的影响。研究表明,中主应力系数对在不排水单调剪切条件下饱和松砂的强度参数具有显著的影响,而对有效应力路径及应力-应变关系发展模式影响较小。基于广义双剪强度准则,从理论上探讨了土的强度参数对于中主应力的依赖性,并与试验结果进行了对比。  相似文献   

19.
Shen  Yang  Du  Wenhan  Xu  Junhong  Rui  Xiaoxi  Liu  Hanlong 《Acta Geotechnica》2022,17(2):411-426

Plenty of geomechanics tests and theories have confirmed the existence of non-coaxiality while soil is subjected to principal stress rotation. This paper investigated the influence of one particular principal stress path, which is a ‘heart-shape’ stress path that is normally induced by high-speed train loading, on the non-coaxiality of reconstituted soft clay. Hollow cylinder apparatus was employed to carry out series of undrained dynamic tests. The goals of this study were to (1) reveal the essential factors of complex cyclic loading paths that influence non-coaxiality in clayey soil and (2) quantify the influence of the factors on variation in non-coaxiality under the high-speed training loading. To analyze the non-coaxiality under high-speed train loading, (a) the pure rotation stress path was utilized as comparison for underling the different influence that ‘heart-shape’ stress path has from other conventional cyclic stress paths. (b) Two variables, dynamic stress ratio and tension–compression amplitude ratio, were introduced in analyzing the evolution of the non-coaxial angle. (c) Based on the test results, equations for describing the revolution of non-coaxiality were proposed which can help to describe the variation in non-coaxial angle under complex loadings quantitatively and understand the influence of the major factors of the stress path intensively.

  相似文献   

20.
Summary  A micromechanics-based model, able to quantify the effect of various parameters on the complete stress–strain relationship, is described. The closed-form explicit expression for the complete stress–strain relationship of a rock material containing an echelon cracks arrangement subjected to compressive loading is obtained. The complete stress–strain relationship including the stages of linear elasticity, non-linear hardening and strain softening is established. The results show that the complete stress–strain relationship and the strength of rock with echelon cracks depend on the crack interface friction coefficient, the sliding crack spacing, the perpendicular distance between the two adjacent rows, the fracture toughness of rock material and orientation of the cracks. The present model is used to evaluate the complete stress–strain relationship and strength for crack-weakened rock at the underground cavern complex of the Ertan Hydroelectric Project. The predicted strength is in agreement with that obtained by the Hoek–Brown criterion. The numerical results obtained with the complete stress–strain relationship seem to be in good agreement with the measured values. Author’s address: Xiao-Ping Zhou, School of Civil Engineering, Chongqing University, 443002 Chongqing, P.R. China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号