首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two medium to low volatile bituminous rank coals in the Lower Cretaceous Gates Formation (Mannville equivalent), Inner Foothills of Alberta, were cored as part of a coalbed methane exploration program. The target seams (Seam 4 and Seam 10) were intersected at 652 m and 605 m, respectively. The coals were bright banded, relatively competent and reasonably cleated, with cleat spacing between 5–20 mm. The FMI (Formation Micro-Imaging) log identified two primary fracture directions, corresponding to both face and butt cleats, which were developed almost equally in some coal intervals. The amount of shearing was limited, in spite of the presence of numerous thrust faults and fold structures in the corehole vicinity. Total gas content was high, with an average of 17.7 cm3/g (arb; 568.1 scf/t). An adsorption isotherm of the thick Seam 4 showed gas saturation levels of 90% at in-situ reservoir conditions. Methane content was 92–96% and carbon dioxide levels were less than 2%. Isotopic studies on the methane confirmed the thermogenic origin of the gas, as anticipated based on the coal rank. The coal seams were fracture stimulated using 50/50 nitrogen and fresh water along with 9 to 12 tons of 12/20 mesh sand used as a proppant. It is believed that the coals were not stimulated properly because of the small proppant volume and the complex — and often unpredictable — fracture pattern in coals, particularly in the Inner Foothills region that has high stress anisotropy. An injectivity test showed coal absolute permeability to be less than 1 mD, the skin to be −  2 (indicating a slightly damaged coal) and water saturation in the cleats to be 90%. A four-month production test was conducted; gas rates declined from 930 to 310 m3/d (33 to 11 MCFD) and water rates were low (< 5 BWD). Produced water was saline (TDS was 20,000 mg/L) and high in chloride and bicarbonate ions. Production testing was followed by history matching and numerical simulation, which consisted of numerous vertical and horizontal well development scenarios and other parameters. Simulating multiple parallel horizontal wells in the Gates coals resulted in the highest peak gas production rates, cumulative production and recovery efficiencies, in agreement with public data from the Mannville coals in the deeper part of the Alberta Syncline. The positive effect of constructive interference in depressurizing the coal reservoirs and accelerating gas production over short periods of time was demonstrated. Coal quality data from a nearby underground mine shows that drilling horizontal wellbores in the Gates coals would be challenging because of unfavourable geomechanical properties, such as low cohesion and unconfined compressive strength values, and structural complexity.  相似文献   

2.
Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5 m from the larger dike, and from 0.63% to 3.71% within 3.3 m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417 cm3/g in coal situated 4.7 m from the intrusive contact to 0.0126 cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility.  相似文献   

3.
The Seelyville Coal Member of the Linton Formation in Indiana potentially contains 0.03 trillion m3 (1.1 TCF) of coalbed gas. The gas content determined by canister desorption technique ranges from 0.5 to 5.7 cm3/g on dry ash free basis (15.4 to 182.2 scf/ton). The controls on gas content distribution are complex, and cannot be explained by the coal rank alone. Ash content and the lithology of the overlying strata, among other factors, may influence this distribution.  相似文献   

4.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

5.
Summary The pleochroic behaviour of a gem-quality enstatite from Tanzania was investigated in the region =2500 to 4000 cm–1. Two sharp absorption bands at =3410 cm–1 and =3510 cm–1 are interpreted to be caused by OH stretching vibrations. As their absorption coefficients are considerably larger parallel to [001] (=direction of the silicate chains) than perpendicular to this direction, the OH dipoles have to be oriented approximately parallel to [001]. On this basis, a stereochemical interpretation of the incorporation of the OH groups into the structure is given.
Der Pleochroismus eines Enstatits von Edelsteinqualität im Gebiet der OH-Streckfrequenz und seine kristallchemische Interpretation
Zusammenfassung Das pleochroitische Verhalten eines Enstatits von Edelsteinqualität aus Tansania wurde im Bereich =2500 bis 4000 cm–1 untersucht. Von zwei scharfen Banden bei =3410 cm–1 und 3510 cm–1 wird angenommen, daß sie durch OH-Streckschwingungen herrühren. Da ihre Absorptionskoeffizienten parallel zu [001] (=Richtung der Silikatketten) beträchtlich größer sind als senkrecht dazu, müssen die OH-Dipole ungefähr parallel zu [001] liegen. Auf dieser Basis wird der Einbau der OH-Gruppen in die Struktur diskutiert.


With 3 Figures  相似文献   

6.
The effect of petrographic composition on the methane sorption capacity has been determined for a suite of coals and organic-rich shales. Subbituminous and bituminous coals were separated into bright and dull lithotypes by hand-picking. The methane sorption capacities range between 0.5 and 23.9 cm3/g at a pressure of 6 MPa. The low volatile bituminous Canmore coal and the anthracite sample have the highest capacities with the “natural coke” having the lowest. For low-rank coals there is no significant difference between bright and dull samples except for one coal with the dull sample having a greater sorption capacity than its bright equivalent. For higher-rank coals, the bright samples have a greater methane capacity than the dull samples and the difference between sample pairs increases with rank. The boghead coal samples have the highest sorption capacities in the liptinite-rich coals suite and are higher than subbituminous to medium volatile bituminous samples. Pore size distribution indicates that methane is held as solution gas in liptinite-rich coals and by physical sorption in micropores in liptinite-poor coals. These contrasting processes illustrate that liptinite-rich samples need to be independently assessed. The positive relationship between reactive inertinite content and methane sorption capacity occurs within the subbituminous to medium volatile bituminous coals because the reactive inertinite is structurally similar to vitrinite and have a higher microporosity than non-reactive inertinite. Reactivity of inertinite should be assessed in CBM studies of dull coals to provide a better understanding of petrographic composition effects on methane capacity.  相似文献   

7.
The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia.As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of ~ 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m3/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH4) ranging from 80 to 93% and carbon dioxide (CO2) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH4 with about 94 to 98% CH4 and less than 5% CO2.The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m.  相似文献   

8.
The adsorption capacity and thermodynamic properties of high-rank tectonically deformed coal (TDC) samples from the Yangquan coalfield in North China were analyzed by combining isothermal adsorption and Polanyi potential theory. The adsorption capacities of mylonitic- (10.7015–17.2065 cm3/g) and scaly (9.8237–11.5386 cm3/g) coals are higher than those of cataclastic- (8.3496–9.5238 cm3/g) and schistose (7.7990–8.0467 cm3/g) coals. The primary- and wrinkle coals have the lowest adsorption capacities. The adsorption potential (the change of surface free energy per mole during physical adsorption) decreases with the increasing adsorption space in a parabola characteristic. For different TDCs, the interval length of the adsorption potential distribution is in the same order with the adsorption capacity. The interval lengths of primary-, schistose-, and mylonitic coals are 0–0.014, 0–0.020, and 0–0.025 cm3/g, respectively. The reduction amounts of surface free energy for mylonitic- (6.040–10.082 kJ/cm2) and scaly (2.075–6.047 kJ/cm2) coals are higher than those of the cataclastic- (3.069–4.249 kJ/cm2) and wrinkle (2.222–3.434 kJ/cm2) coals. The initial and saturated adsorption surface free energies of mylonitic- and scaly coals are higher than those of the primary- and schistose coals. Based on the difference in the surface free energy reduction values, the TDCs, especially the mylonitic- and scaly coals, have a greater adsorption potential than primary- and other TDCs.  相似文献   

9.
This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C1, C2, C3) and CO2 yielded gas concentrations, plus δ13C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%Ro) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm3/g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ≈ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.  相似文献   

10.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   

11.
Calcareous hornfelses and marbles all contain calcite+K-feldspar+quartz+sphene±diopside±plagioclase ±scapolite±clinozoisite. In addition, rocks on one side of a fault contain combinations of biotite, amphibole, and muscovite while those on the other side contain combinations of grossular, wollastonite, and axinite. At bars, mineral-fluid equilibria in biotite and amphibole-bearing rocks record T= 440° C and garnet-bearing rocks record T=540° C and Conventional volumetric fluid-rock ratios were calculated using measured progress of prograde decarbonation reactions and the conditions of metamorphism: marbles, 0–0.4; amphibole-bearing hornfelses, 1.0–1.4; garnet-bearing hornfelses, 2.8–6.7. Decarbonation reactions were driven by pervasive infiltration of rock by reactive aqueous fluids. Differences in fluid-rock ratio between interbedded marble and hornfels and lack of correlation between fluid-rock ratio and whole-rock Cl-content, however, argue for channelized fluid flow along lithologic layers. A new analysis of reaction progress allows estimation of time-integrated fluxes for a specified temperature gradient along the direction of flow. Results are: marbles, 0–0.1×105 cm3/cm2; amphibole-bearing hornfelses, 0.8–1.3×105 cm3/cm2; garnet-bearing hornfelses, 1.2–2.5 × 105 cm3/cm2. Fluid flowed from regions of low to regions of high temperature. Using a simple thermal model for the area, the duration of contact metamorphism was estimated as 105 years. Assuming the time of fluid flow was the same as the duration of the thermal event, the first measurements of average metamorphic fluxes (q) and permeabilities (k) are: average marbles, q=0–0.3×10–8 cm/s and k =2×10–6 darcy; hornfels, q=3–8×10–8 cm/s and k =20–53×10–6 darcy. Estimated premeabilities are within the range of values measured for metamorphic rocks in the laboratory. Fluxes, permeabilities, and whole-system fluidrock ratios are similar to those estimated for the Skaergaard hydrothermal system by Norton and Taylor (1979).  相似文献   

12.
Zusammenfassung Colquiriit tritt in Vergesellschaftung mit Ralstonit, Gearksutit, Zinkblende, Madocit und Pyrit im Bereich der Zinnlagerstätte von Colquiri in Bolivien auf. Das als selten zu betrachtende Mineral bildet maximal cm-große xenomorphe durchscheinende bis durch-sichtige Körner von weißlicher Farbe. Es zeigt keine Spaltbarkeit. Härte ca. 4; Dichte (gem.) 2,94, (ber.) 2,95 g/cm3;n 1,385±0.002,n 1,388±0,002, einachsig oder schwach zweiachsig, negativ. Colquiriit kristallisiert trigonal, Raumgruppe oderP31c,a 0 5,02,c 0 9,67 Å,Z=2. Stärkste Linien des Pulverdiagramms: 3,98(7) ; 3,23(10) ; 2,22(9) ; 1,736(8) . Eine chemische Analyse ergab: Li 3,1, Na 0,34, Mg 0,55, Ca 22,8, Al 13,4, F 58,0, Gewichtsverlust (105 °C) 0,5, Summe 98,69%, woraus sich die idealisierte Formel LiCaAlF6 ableiten läßt. Beim Erhitzen wird das Gitter zwischen 800 und 900°C zerstört.
Colquiriite, a new fluoride mineral from the Colquiri tin deposit in Bolivia
Summary Colquiriite occurs at the Colquiri tin deposit in Bolivia and is associated with ralstonite, gearksutite, sphalerite, madocite and pyrite. The mineral, which probably is a rare species, forms anhedral translucent to transparent white grains reaching up to 1 cm in size. No cleavage; hardness about 4; density (meas.) 2.94, density (calc.) 2.95 g/cm3;n 1.385±0.002,n 1.388±0.002, uniaxial or weakly biaxial, negative. Colquiriite is trigonal,a 0 5.02,c 0 9.67 Å, space group orP31c,Z=2. The strongest lines of the powder pattern are: 3.98(7) ; 3.23(10) ; 2.22(9) ; 1.736(8) . The chemical analysis gave: Li 3.1, Na 0.34, Mg 0.55, Ca 22.8, Al 13.4, F 58.0, weight loss (105 °C) 0.5, sum 98.69%, leading to the idealized formula LiCaAlF6. Heating experiments show that the lattice breaks down between 800 and 900 °C. The new mineral and its name have been approved by the I.M.A. Commission on New Minerals and Mineral Names.
  相似文献   

13.
Source-depth estimations based on analysis of gravity data enabled us to establish the basement topography in the area of the Mexicali Valley (Mexico). Analysis of the radial power spectrum from all the Bouguer gravity anomaly data indicates that the intermediate wave number interval ranging between 0.025 km−1 and 0.112 km−1 with a mean source depth of 3.5 km corresponds to the sedimentary basin. The gravity spectrum was analyzed to estimate the depth to the basement in different square sectors (windows) of the study area. Linear regression analysis was used to calculate the slopes of the respective power spectrums, to subsequently estimate the depths to the basement in each sector. The basement topography obtained in this way ranged from 2.1 to 4.5 km. Our basement topography is consistent with the depths to the basement reported from wells drilled in the study area. The basement is formed by granites to the northeast, dikes to the southwest, and shaped by structural lows and highs, with graben-horst structures at the center of the studied area.An independent estimation of the mean depth to the basement was obtained based on the ideal body theory. In particular trade-off curves relating the lower bound of the density contrast to the depth to the top of the geological interface were computed. If we assume that the sediments outcrop (as is actually the case), the minimum lower bound on the density contrast is 0.0700 g/cm3. This result would imply a maximum thickness of 13.5 km for the sedimentary infill.Seismic velocities of 5.83 and 4.9 km/s for the basement and the sedimentary infill, respectively, indicates densities of 2.86 and 2.56 g/cm3 according to the Nafe and Drake’s relationship between seismic velocities and densities. The corresponding density contrast of 0.3 g/cm3 helped us to constrain the analysis of the trade-off curves accordingly; the sedimentary thickness is of approximately 3.5 km. This result is in agreement with that obtained from our spectral analysis.  相似文献   

14.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

15.
Coal is present in the Alberta Foothills/Mountains in five zones: the Kootenay, Gething, Gates, Brazeau and Coalspur coal zones. For coalbed-methane (CBM) evaluation purposes, they can be divided into shallow (less than 1000 m depth) and deep (greater than 1000 m depth) coal zones. The potential gas content of all shallow coal zones totals about 878 × 109 m3 (31 Tcf) of CBM, which is considered an inferred, initial, in-place, coalbed-methane resource estimate based on limited data. The limited amount of data on formation testing and measured gas content indicate that the inferred resource is bordering on the speculative category.The gas content of all deep coal zones (deeper than 1000 m) totals 2.8 × 1012 m3 (about 99 Tcf) of in-place coalbed-methane gas. Consequently, the total ultimate coalbed-methane resource could be 3.7 × 1012 m3 (130 Tcf). However, coalbed-methane recovery from deep coals is generally not attempted because of the high cost of drilling and the low permeability that results from high overburden load and stress.The only (limited) Foothills coalbed-methane production has been from the southern Alberta Kootenay Coal Zone, which is very prospective for coalbed-methane production. The shallow Gates Coal Zone in the central and northern Foothills is also prospective, but needs to be better tested. The best potential for coalbed methane in the Coalspur Coal Zone is in the Edson area (Entrance Syncline and Triangle Zone). The Kootenay and Gates coal zones are not well defined in the northern part of the Calgary (NTS 82O) map sheet.  相似文献   

16.
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.  相似文献   

17.
Orthorhombic amphiboles with excess OH, which can be schematically deduced from anthophyllite by the combined substitutions Mg2+ + O2–Li++OH and Mg2+2 Li+, were synthesized at 750–875° C/1 kbar in the system Li2O-MgO-SiO2-H2O. Their phase relations are presented for 800° C/1 kbar . An amphibole with the analytical composition 2.70 wt% Li2O, 31.1 wt% MgO, 63.0 wt% SiO2, and 3.29 wt% H2O has lattice constants a 0 18.588 (11), b 0 17.966 (10), c 0 5.262 (3) Å, V 0 1,757.2 (1.5) Å3 (referred to Space Group Pnma). The OH-valence vibrational spectrum of this amphibole showed v OH bands at 3,667, 3,708, and 3,725 (shoulder) cm–1, which are ascribed to OH in the configurations (MgMgMg)-OH, (MgMgMg)-OH-Li (Li in the A-site) of the pseudotrigonal (M1M1M3)-OH arrangement in the amphibole structure, and to Si-OH, respectively. No explanation can at present be offered for an additional shoulder at 3,695 cm–1. The proposed structural formula is (Li0.27 0.73)(Li1.11 Mg0.89)· (Mg5)(Si8.01O21.20(OH)0.80)(OH)2.00.  相似文献   

18.
A 3-D layered structure of the Levant and the southeastern Mediterranean lithospheric plates was constructed using interpretations of seismic measurements and borehole data. Structural maps of three principal interfaces, elevation, top basement and the Moho, were constructed for the area studied. This area includes the African, Sinai and Arabian plates, the Herodotus and the Levant marine basins and the Nile sedimentary cone. In addition, an isopach map of the Pliocene sediments, as well as the contemporaneous amount of denuded rock units, was prepared to enable setting up the structural map of the base Pliocene sediment. Variable density distributions are suggested for the sedimentary succession in accord with its composition and compaction. The spatial density distribution in the crystalline crust was calculated by weighting the thicknesses of the lower mafic and the upper felsic crustal layers, with densities of 2.9 g/cm3 and 2.77 g/cm3, respectively. Results of the local (Airy) isostatic modeling with compensation on the Moho interface show significant deviations from the local isostasy and require variable density distribution in the upper mantle. Moving the compensation level to the base of the lithosphere ( 100 km depth) and adopting density variations in the mantle lithosphere yielded isostatic compensation (± 200 m) over most of the area studied. The spatial pattern obtained of a density distribution with a range of ± 0.05 g/cm3 is supported by a regional heat flux. Simulations of the flexure (Vening Meinesz) isostasy related to the Pliocene to Recent sedimentary loading and unloading revealed concentric oscillatory negative and positive anomalies mostly related to the Nile sedimentary cone. Such anomalies may explain the rapid subsidence in the Levant Basin and the arching in central Israel, northern Sinai and Egypt during Pliocene–Recent times. Comparison between the observed (Bouguer) gravity and the calculated gravity for the constructed 3-D lithospheric structure, which has variable density distributions, provided a good match and an independent constraint for the large-scale structure suggested and confirmed an oceanic nature for the Levant Basin lithosphere.  相似文献   

19.
Zusammenfassung Das neue Mineral Koritnigit ist ein wasserhaltiges Zinkhydrogenarsenat der Formel Zn[H2O|HOAsO3]. Die chemische Analyse (Elektronenmikrosonde und T.G.A.) ergab: As2O5 51,75%, ZnO 35,97% und H2O 12,3%, Summe 100,0%. Die HOAsO3-Ionen wurden IR-spektroskopisch nachgewiesen. Koritnigit ist löslich in kalter, verdünnter HCl und HNO3.Die Gitterkonstanten sind:a 0=7,948(2),b 0=15,829(5),c 0=6,668(2) Å, =90,86(2), =96,56(2), =90,05(2)o,V=833,2(4)Å3,V=8. Die Raumgruppe ist . Die stärksten Linien des Pulverdiagramms sind: 7,90(10) (020,100), 3,83(7) ( ), 3,16(9) ( ) 2,926(4) (150), 2,679(4) ( ), 2,461(6) ( ), 2,186(5) ( ), 1,969(4) (400), 1,649(3) (004).Koritnigit ist wasserklar bis durchscheinend weiß. Idiomorphe Kristalle sind nicht bekannt. Die Spaltbarkeit nach {010} ist ausgezeichnet und auf {010} sind Spaltspuren nach [001] und nach [100] erkennbar. Härte 2.G=3,54 g·cm–3,D x =3,56 g·cm–3. Koritnigit ist optisch zweiachsig positiv, 2V70(5)o. Die Werte der Lichtbrechung sind:n =1,632(5),n =1,652(3) undn =1,693(3).Koritnigit wurde auf der 31. Sohle der Tsumeb-Mine, Südwestafrika gefunden. Er kommt als Sekundärmineral in Paragenese mit Cu-Adamin, Stranskiit und drei weiteren, vorerst nicht identifizierten mineralen in Zersetzungshohlräumen von Tennantit vor.
Koritnigite, Zn[H2O|HOAsO3], a new mineral from Tsumeb, South West Africa
Summary The new mineral koritnigite is a hydrated zinc hydrogen arsenate with the formula Zn[H2O|HOAsO3]. Chemical analysis (electron microprobe and t.g.a.) gave: As2O5 51.75%, ZnO 35.97%, and H2O 12.3%, total 100.0%. The HOAsO3 ions were determined by IR spectroscopy. Koritnigite is soluble in cold diluted HCl and HNO3. The unit cell dimensions are:a 0=7.948(2),b 0=15.829(5),c 0=6.668(2)Å, =90.86(2), =96.56(2), =90.05(2)o,V=833.2(4) Å3,Z=8. The space group is . The strongest lines of the powder pattern are: 7.90(10) (020, 100), 3.83(7) ( ), 3.16(9) ( ), 2.926(4) (150), 2.679(4) ( ), 2.461(6) ( ), 2.186(5) ( ), 1.969(4)(400), 1.649(3) (004).


Mit 2 Abbildungen

Herrn Univ. Prof. Dr.H. Meixner zum 70. Geburtstag gewidmet.  相似文献   

20.
From the comprehensive study on the homogenization temperatures and the occurrence of fluid inclusions in the framework minerals of the strata between or above the Carboniferous–Permian coals in the Qinshui basin, Shanxi, three stages are predicted of hydrocarbon expulsion from the coals. Combined with the known history of basin evolution, it is deduced that the expulsion of hydrocarbons happened during the J1 (210–180 Ma), the early K1 (150–130 Ma) and K2E1 (110–60 Ma). In the early stage, the coals produced and discharged coal-generated oils. The average GOI value of four sandstone samples is relatively high, as they have been exposed to high paleo-oil saturation in the strata between or above the coals. The biomarker compositions of oil-bearing fluid inclusions are similar to those of extracts from the coals, and so it is concluded that those oils were derived from the same family of the coals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号