首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
流星群研究     
对流星群的研究作了简明而系统的介绍,重点叙述流星天文学的历史与现状;流星群的地面和空间观测;流星雨观测和理论辐射点;流星群的轨道计算、运动速度和轨道演变;流星群与彗星和小行星的相互关系以及流星群研究中的新课题。  相似文献   

2.
The entry and subsequent breakup of the ~17–20 m diameter Chelyabinsk meteoroid deposited approximately 500 kT of TNT equivalent energy to the atmosphere, causing extensive damage that underscored the hazard from small asteroid impacts. The breakup of the meteoroid was characterized by intense fragmentation that dispersed most of the original mass. In models of the entry process, the apparent mechanical strength of the meteoroid during fragmentation, ~1–5 MPa, is two orders of magnitude lower than the mechanical strength of the surviving meteorites, ~330 MPa. We implement a two-material computer code that allows us to fully simulate the exchange of energy and momentum between the entering meteoroid and the interacting atmospheric air. Our simulations reveal a previously unrecognized process in which the penetration of high-pressure air into the body of the meteoroid greatly enhances the deformation and facilitates the breakup of meteoroids similar to the size of Chelyabinsk. We discuss the mechanism of air penetration that accounts for the bulk fragmentation of an entering meteoroid under conditions similar to those at Chelyabinsk, to explain the surprisingly low values of the apparent strength of the meteoroid during breakup.  相似文献   

3.
The interaction between a large meteoroid and the atmosphere is modeled as its destruction into a cloud of fragments and vapors moving with a common shock wave. Under the action of aerodynamic forces the shape of this cloud is deformed—it is expanded in the direction transverse to the motion and compressed in the longitudinal direction. With allowance for the pressure distribution over the surface of a body varying its shape (it is assumed that the sphere is transformed into a flattened spheroid), the relation for the rate of increase in the midsection radius of a fragmented meteoroid has been obtained. This rate significantly depends on the degree of the meteoroid flattening which leads to a significantly smaller increase in the transverse size of the meteoroid along the trajectory as compared to similar models used in the literature where the influence of the body shape was not considered. The proposed model also takes into account the change in the density of the cloud of fragments due to an increase in gaps between them. An approximate analytical solution of equations of the physical theory of meteors with drag and heat transfer coefficients varying along the trajectory has been obtained for a fragmented meteoroid. The interaction of the Chelyabinsk meteoroid with the atmosphere is modeled and the solution obtained for the energy release curve is compared with the observational data.  相似文献   

4.
This paper investigates the physics of meteoroid breakup in the atmosphere and its implications for the observed features of strewn fields. There are several effects which cause dispersion of the meteoroid fragments: gravity, differential lift of the fragments, bow shock interaction just after breakup, centripetal separation by a rotating meteoroid, and possibly a dynamical transverse separation resulting from the crushing deceleration in the atmosphere. Of these, we show that gravity alone can produce the common pattern in which the largest crater occurs at the downrange end of the scatter ellipse. The average lift-to-drag ratio of the tumbling fragments must be less than about 10?3, otherwise small fragments would produce small craters downrange of the main crater, and this is not generally observed. The cross-range dispersion is probably due to the combined effects of bow shock interaction, crushing deceleration, and possibly spinning of the meteoroid. A number of terrestrial strewn fields are discussed in the light of these ideas, which are formulated quantitatively for a range of meteoroid velocities, entry angles, and crushing strengths. It is found that when the crater size exceeds about 1 km, the separation between the fragments upon landing is a fraction of their own diameter, so that the crater formed by such a fragmented meteoroid is almost indistinguishable from that formed by a solid body of the same total mass and velocity.  相似文献   

5.
High resolution photographic spectra of two fireballs have been analyzed. The fireballs were produced by meteoroids of asteroidal origin of the mass of the order of 1 kg. Temperature, size, and mass of the vapor cloud around the meteoroid was derived at selected points along the trajectory. Abundances of 11 elements, including lithium, were determined. The abundances of refractory elements in the vapors of the first meteoroid indicate that only 90–95% of the ablated material was vaporized. The meteoroid was likely a chondritic body. Relative stability of the vapor cloud was disturbed for 0.1 s after a major fragmentation of the meteoroid at the height of 42 km. Size and mass of the cloud decreased after the fragmentation and this enabled more intensive heat transfer from the incoming airflow. Both the vapor temperature and the vaporization temperature of the ablated melt increased. A brief millisecond flare of the fireball was produced under these conditions by a violent vaporization of small amount of material. The composition of the vapors of the second meteoroid can be explained either by an anomalous meteoroid composition with severely depleted Al, Ca, and Mg or by highly incomplete evaporation of the ablated material reaching only about 50%.  相似文献   

6.
The shape and characteristics (beginning and end heights, and height of maximum brightness) of meteor light curves are investigated under the constraint that the surface area S that a meteoroid presents to the oncoming air flow varies as a power law in the meteoroid mass m such that   S ∼ m α  . We investigate the meteoroid ablation for a range of values of α, and find that the  α= 1  condition allows for a fully analytic solution to the coupled differential equations of meteoroid ablation when the density profile is that of an isothermal atmosphere. The possible geometrical properties of Geminid meteoroids are discussed in terms of the  α= 1  ablation model and it is shown that they are consistent with being derived from an asteroidal, rather than cometary, parent body.  相似文献   

7.
Abstract– Analytic methods by Ceplecha have long been used for the determination of meteoroid heliocentric orbits. These methods include both the derivation of an initial atmospheric contact position and velocity state, and the calculation of an orbit at infinity based on zenithal attraction assumptions. Herein, we describe a numerical integration‐based verification for a portion of the Ceplecha methods, a verification driven by the need for an accurate meteoroid ephemeris in the hours before atmospheric contact. We show a close correspondence in analytic and numerical results, with a previously undocumented minor correction to a meteoroid’s longitude of the ascending node.  相似文献   

8.
An analysis of radar and photographic meteor data and of spacecraft meteoroid penetration data indicates that there probably has not been a large increase in meteoroid impact rates in the last 104 yr. The solar flare tracks observed in the glass linings of meteoroid impact pits on lunar rock 15205 are therefore reanalyzed assuming a meteoroid flux that is constant in time. Based on this assumption, the data suggest that the production rate of Fe-group solar flare tracks may have varied by as much as a factor of 50 on a time scale of about 104 yr. No independently obtained data are known to require conflict with this interpretation. Confidence in this conclusion is somewhat qualified by the experimental and analytical uncertainties involved, but the conclusion nevertheless remains the present “best” explanation for the observed data trends.  相似文献   

9.
We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.  相似文献   

10.
W.-H. Ip 《Icarus》1984,60(3):547-552
Reevaluation of the interplanetary meteoroid mass flux at 10 AU obtains a value of M≈6×104g sec?1 for the meteoroid mass loading rate to the rings of Saturn. This meteoroid impact flux suggests that a large change to the configuration of the ring system could occur in a relatively short time (?109years). This new element thus should be taken into consideration in discussion of the dynamical evolution of the rings.  相似文献   

11.
It is shown that the inclusion of the effect of internal friction on the deformation of a damaged meteoroid leads to a marked (by 10–20 km) decrease in the height of the meteoroid deceleration and, hence, the height of the energy release. The possible decrease of the role of internal friction due to “acoustic fluidization” and the penetration of impact-compressed gas through the cracks in the interior of the damaged meteoroid are discussed.  相似文献   

12.
Meteor showers have been observed for a considerable time, and the cause, meteoroids from a meteoroid stream ablating in the Earth's atmosphere, has also been understood for centuries. The connection between meteoroid streams and comets was also established 150 years ago. Since that time our ability both to understand the physics and to numerically model the situation has steadily increased. We will review the current state of knowledge. However, just as there are differences between the behaviour of long period comets, Halley family comets and Jupiter family comets, so also differences exist between the associated meteoroid streams. Streams associated with Jupiter family comets show much more variety in their behaviour, driven by the gravitational perturbations from Jupiter. The more interesting showers associated with Jupiter family comets will be discussed individually.  相似文献   

13.
The hypothesis that superrotation of the Earth's atmosphere results from meteoroid influx is untenable. Meteor observations are not of sufficient precision to substantiate direct rotation when the meteoroid influx is treated macroscopically. Detailed dynamic studies argue against any possible direct rotation.  相似文献   

14.
Long‐exposure fireball photographs have been used to systematically record meteoroid trajectories, calculate heliocentric orbits, and determine meteorite fall positions since the mid‐20th century. Periodic shuttering is used to determine meteoroid velocity, but up until this point, a separate method of precisely determining the arrival time of a meteoroid was required. We show it is possible to encode precise arrival times directly into the meteor image by driving the periodic shutter according to a particular pattern—a de Bruijn sequence—and eliminate the need for a separate subsystem to record absolute fireball timing. The Desert Fireball Network has implemented this approach using a microcontroller driven electro‐optic shutter synchronized with GNSS UTC time to create small, simple, and cost‐effective high‐precision fireball observatories with submillisecond timing accuracy.  相似文献   

15.
Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique’s systematic implementation. A prototype has been developed for the purpose of automatically searching lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year’s worth of lunar observations is discussed along with examples of impact flashes.  相似文献   

16.
Abstract— When a meteoroid passes through the Earth's atmosphere, it may generate acoustic waves in the form of a conical shock front and again in an explosive terminal burst. These acoustic waves reach the ground and their arrival times may be recorded on seismograms. Equations are given (with numerical examples, and for various atmospheric models) to recover the track of the meteoroid, and possibly the meteorite, from times of arrival at the seismographic stations.  相似文献   

17.
In the data of several infrasound stations in Europe, manifestations of the explosion of the Romania meteoroid were detected. The azimuth angle, celerity, duration, amplitude, and energy of the infrasound signal have been estimated. The composition, mass, volume, and sizes of the meteoroid are discussed.  相似文献   

18.
Earlier analyses of the Pioneer 8 and 9 experimental meteoroid data have shown that the detectors on these two spacecraft are intercepting meteoroids with hyperbolic orbital parameters. It is shown in this paper that these results are entirely consistent with and, indeed, to be expected from other observations of the interplanetary meteoroid complex. Collisional breakup of meteoroids and post-collision radiation pressure modification of their orbits is found to be a sufficient cause for the observed results. Details of the calculations as well as of the results are presented.  相似文献   

19.
We present an analysis of sporadic meteor number 07406018, observed by image intensified video cameras at two stations, which showed a pronounced deceleration along its trajectory. We have applied the erosion model to analyze simultaneously the deceleration and light curve. We have found that the meteoroid had a low density of about 500 kg m−3, consistent with its cometary orbit. The meteoroid structure was, nevertheless, markedly different from the Draconid meteoroids, studied recently with the same model. The size of the constituent grains was larger and the erosion energy was higher than in Draconids. The meteor spectrum was also different from Draconid spectra and showed very bright Na lines. The meteoroid composition was probably different from normal cometary composition.  相似文献   

20.
The height distributions, velocity distributions and flux measurements of underdense echoes determined from meteor radar observations are significantly affected by the attenuation associated with the initial radius of meteor trains. Dual-frequency radar observations of a very large set of sporadic radar meteors at 29 and 38 MHz yield estimates of the initial train radius and its dependence on height and meteoroid speed as determined by the time-delay method. We provide empirical formulae that can be used to correct meteoroid fluxes for the effect of initial train radius at other radio frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号