首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with some new problems of the dynamics and energetics of the Earth's core. The model of the so-called gravitationally-powered dynamo is investigated under the assumption of liquid immiscibility in the FeS system as a possible core material. In this way the growing inner core causes nucleation of small FeS-droplets that ascend under the release of gravitational potential energy. This energy is enough to drive a dynamo with a toroidal magnetic field of mean size.  相似文献   

2.
An expression for the inviscid horizontal velocity field at the surface of the Earth's core necessary to account for the poloidal main magnetic field and its secular variation seen at the Earth's surface is derived for an insulating mantle in the limit of infinite core conductivity. The starting point of derivation is Ohm's law rather than the magnetohydrodynamic induction equation. Maps of the resulting motion for epoch 1965.0 at different truncation levels are presented and discussed.  相似文献   

3.
Reversals of the Earth's magnetic field have been claimed to correlate with ice ages, tectonic events and falls of tectites. A physical mechanism is needed to relate reversals with the other events before these correlations can be taken seriously. One possible connection lies through changes in pressure in the core. If events high up in the mantle were to lead to changes in core pressure, this would affect the rate of freezing of the liquid core and modify the power supplied to the dynamo. A sufficiently large modification could set off a reversal or perhaps change the mode of operation of the dynamo from a non-reversing to a reversing state.The model of Gubbins et al., allows a quantitative calculation to be made for the effect of a pressure change on the energy release. Any sufficiently sudden pressure change would change the power, but it seems unrealistic to consider less than a 1000 year time scale. Relaxation of shear forces in the mantle, overturning of core fluid, and changes in magnetic fields all take place on about this time scale. According to the model, a pressure change of 0.1 bar over a 1000 years could change the power supply drastically.A continuous process of mantle differentiation leading to the formation of the upper mantle from an initially homogeneous mantle can only provide 10% of the required pressure change, but the effect cannot be ruled out as a power source for the dynamo because uncertainties in the calculations can amount to at least an order of magnitude. The other effects produce changes of up to 1% in the power supply, which may be sufficient to alter the characteristics of the dynamo and produce reversals or a change in reversal behaviour. Further speculation must await a better understanding of the dynamics of reversals, and of mantle processes.  相似文献   

4.
The dynamics of the Earth's core are dominated by a balance between Lorentz and Coriolis forces. Previous studies of possible (magnetostrophic) hydromagnetic instabilities in this regime have been confined to geophysically unrealistic flows and fields. In recent papers we have treated rather general fields and flows in a spherical geometry and in a computationally simple plane-layer model. These studies have highlighted the importance of differential rotation in determining the spatial structure of the instability. Here we have proceeded to use these results to construct a self-consistent dynamo model of the geomagnetic field. An iterative procedure is employed in which an α-effect is calculated from the form of the instability and is then used in a mean field dynamo model. The mean zonal field calculated there is then input back into the hydromagnetic stability problem and a new α-effect calculated. The whole procedure is repeated until the input and output zonal fields are the same to some tolerance.  相似文献   

5.
The advantages of the approximation of the Earth's magnetic field by means of the field of the so-called natural magnetic sources are discussed. The shifting of these natural magnetic sources, determined for different epochs, is used to forecast the Earth's magnetic field and to draw conclusions about the motion of the corresponding part of the Earth. On the basis of the representation of the Earth's magnetic field from several past geological epochs as a field of one optimum dipole a new theory about the Earth's evolution is proposed.  相似文献   

6.
Paleomagnetic data indicate that there is a north-south asymmetry in the time-averaged magnetic field and that there are small but significant differences between the normal and reverse polarity states. The geographical variation is most likely due to spatial variation in the boundary conditions at the core-mantle interface. The difference in the magnetic fields of the reverse and normal polarity states can be modeled in terms of a “standing field”. The paleomagnetic data are insufficient to determine whether or not this “standing field” is of core origin. However, consideration of mechanisms, including thermoelectric currents, indicates that there probably are important differences in core processes between the two polarity states. At first glance this interpretation is difficult to reconcile with the fact that the magnetic induction equation is antisymmetric with respect to the magnetic field. A way around this problem is the possibility that only certain transitions are allowed between acceptable eigenstates in dynamo models of the Earth's magnetic field.  相似文献   

7.
Seismological results interpreted as evidence for large inhomogeneities near the base of the Earth's mantle below Hawaii have recently been published. It is possible to place constraints on the magnitude of such heterogeneities by identifying seismic phases multiply reflected within the Earth's core. The value of such a simple technique is illustrated by using array recordings of P and S5KP waves that have traversed the bottom of the mantle beneath Hawaii to show that there is no clear evidence for the unusual physical properties attributed to this region of the Earth. Identification of the phase S7KP is also reported.  相似文献   

8.
There has been renewed interest lately in the possibility that at least a part of the Earth's liquid core may be stably stratified. A gravitationally stable region would permit the existence of inertia-gravity or gravity-inertia waves in addition to the Rossby and Kelvin waves which exist due to rotational effects and which are well known in oceanography and atmospheric dynamics. These wave motions are of interest because their periods are dependent on the density stratification as specified by the buoyancy frequency N which in turn determines the amplitude of large-scale radial motions in the core.The waves have too high a frequency to be connected dynamically to the magnetic field in the core, but if they do exist they may be detectable by sensitive long-period gravimeters at the Earth's surface. This paper examines the available evidence for the frequency regimes, excitation and damping mechanisms of the core waves. It is concluded that although the waves may exist theoretically, their detection and interpretation as a method for determining N is a difficult proposition.  相似文献   

9.
Speculation about its possible super-rotation has drawn the attention of many geophysical researchers to the Earth’s inner core. An issue of special interest for geodynamo modelling is the influence of the inner-core conductivity. It has been suggested that the finite magnetic diffusivity of the inner core prevents more frequent reversals of the Earth’s magnetic field. We explore the possible influence of the inner-core conductivity by comparing convection-driven 3D dynamo simulations with insulating or conducting inner cores (CIC) at various parameters. The influence on the field structure in the outer core is only marginal. The time behaviour of dipole-dominated non-reversing dynamos is also little affected. Concerning reversing dynamos, the inner-core conductivity reduces the number of short dipole-polarity intervals with a typical length of a few thousand years. Reversals are always correlated with low dipole strength and these short intervals are found in periods where the dipole moment stays low. Polarity intervals longer than about 10,000 years, where the dipole moment has time recover in strength, are equally likely in insulating and CIC models. Since these latter intervals are of more geophysical relevance, we conclude that the influence of the inner-core conductivity on Earth-like reversal sequences is insignificant for the dynamo model employed here.  相似文献   

10.
11.
The paper presents a numerical model of a slowly cooling Earth's core. On the boundary conditions selected, cooling alone is too slow to effect convection. Convective motions arise only by the additional release of latent heat of crystallization owing to the growth of the inner core. A fundamental feature of the model is the choice of a subadiabatic initial temperature distribution.This is the reason why the outer core acts as a heat reservoir, that slows down the growing rate of the inner core on an acceptable size. For the whole time convection covers only the lower part of the outer core, the upper part remains stably stratified.  相似文献   

12.
Convection in the Earth’s core is usually studied in the Boussinesq approximation in which the compressibility of the liquid is ignored. The density of the Earth’s core varies from ICB to CMB by approximately 20%. The question of whether we need to take this variation into account in core convection and dynamo models is examined. We show that it is in the thermodynamic equations that differences between compressible and Boussinesq models become most apparent. The heat flux conducted down the adiabat is much smaller near the inner core boundary than it is near the core-mantle boundary. In consequence, the heat flux carried by convection is much larger nearer the inner core boundary than it is near the core-mantle boundary. This effect will have an important influence on dynamo models. Boussinesq models also assume implicitly that the rate of working of the gravitational and buoyancy forces, as well as the Ohmic and viscous dissipation, are small compared to the heat flux through the core. These terms are not negligible in the Earth’s core heat budget, and neglecting them makes it difficult to get a thermodynamically consistent picture of core convection. We show that the usual anelastic equations simplify considerably if the anelastic liquid approximation, valid if αT?1, where α is the coefficient of expansion and T a typical core temperature, is used. The resulting set of equations are not significantly more difficult to solve numerically than the usual Boussinesq equations. The relationship of our anelastic liquid equations to the Boussinesq equations is also examined.  相似文献   

13.
A simple new method is described for extracting, from magnetic observations taken at Earth's surface, the vertical growth rate of vertical motion, ?u/?r, at special isolated points on the top surface of Earth's liquid core. The technique utilizes only the radial component of the frozen-flux induction equation and it requires information only on the radial magnetic field, Br, its horizontal gradient, and its secular variations, ?Br/?t, at the core-mantle boundary.  相似文献   

14.
Formation,history and energetics of cores in the terrestrial planets   总被引:1,自引:0,他引:1  
The cores of the terrestrial planets Earth, Moon, Mercury, Venus and Mars differ substantially in size and in history. Though no planet other than the Earth has a conclusively demonstrated core, the probable cores in Mercury and Mars and Earth's core show a decrease in relative core size with solar distance. The Moon does not fit this sequence and Venus may not. Core formation must have been early (prior to ~4 · 109 yr. ago) in the Earth, by virtue of the existence of ancient rock units and ancient paleomagnetism and from UPb partitioning arguments, and in Mercury, because the consequences of core infall would have included extensional tectonic features which are not observed even on Mercury's oldest terrain. If a small core exists in the Moon, still an open question, completion of core formation may be placed several hundred million years after the end of heavy bombardment on tectonic and thermal grounds. Core formation time on Mars is loosely constrained, but may have been substantially later than for the other terrestrial planets. The magnitude and extent of early heating to drive global differentiation appear to have decreased with distance from the sun for at least the smaller bodies Mercury, Moon and Mars.Energy sources to maintain a molten state and to fuel convection and magnetic dynamos in the cores of the terrestrial planets include principally gravitational energy, heat of fusion, and long-lived radioactivity. The gravitational energy of core infall is quantifiable and substantial for all bodies but the Moon, but was likely spent too early in the history of most planets to prove a significant residual heat source to drive a present dynamo. The energy from inner core freezing in the Earth and in Mercury is at best marginally able to match even the conductive heat loss along an outer core adiabat. Radioactive decay in the core offers an attractive but unproven energy source to maintain core convection.  相似文献   

15.
Mean atomic weight profiles for the lunar mantle have been calculated from velocity-density systematic relations using lunar density and seismic velocity models. Despite large variability among the models, the calculation including Poisson's ratio yields a range of mean atomic weight values between 22 and 23 g mol?1 below 150 km. A similar calculation for the Earth's mantle produces a mean atomic weight of 21.1 ±0.4 g mol?1. This suggests that the Moon cannot be derived directly from the Earth's mantle, or that it has had a differentiation history different from the Earth's. The lunar m's require an Fe mole fraction between 0.25 and 0.33 for a pure olivine mantle, or between 0.33 and 0.45 for pure pyroxene.The present profiles are 0.5–3.0 g mol?1 higher than those calculated from lunar compositional models based on lunar rock compositions and petrology and assumed lunar histories, indicating inadequacies in either the seismic or compositional models, or in both. The mean atomic weight approach provides a method of comparing the consistency of seismic and compositional models of planetary interiors.  相似文献   

16.
A detailed study of the ancient intensity of the Earth's magnetic field in Tamilnadu, India is presented using pottery, bricks, tiles etc., obtained from the excavations that have been carried out at some of the important places of historical and archaeological interest. An attempt is made to reconstruct the secular variation of the geomagnetic field intensity. The results reported here reveal considerable changes in the Earth's magnetic field in this region during the past 2400 y. It is observed that the intensity of the geomagnetic field has been previously 57% greater than at present.  相似文献   

17.
It is shown that in the dynamics of a deep fluid of planetary scale such as the Earth's core, compressibility, stratification and self-gravitation are all important as well as rotation. The existing proof of Cowling's theorem prohibiting non-stationary axisymmetric dynamos, and the application of the Proudman-Taylor theorem to core flows, both based on the assumption of solenoidal flow, need to be reconsidered. For sufficiently small (subacoustic) frequencies or reciprocal time scales, an approximation which neglects the effect of flow pressure on the density is valid. We call this the “subseismic approximation” and show that it leads to a new second-order partial differential equation in a single scalar variable describing the low frequency dynamical behaviour. The new “subseismic wave equation” allows a direct connection to be made between the various possible physical regimes of core structure and its dynamics.  相似文献   

18.
The elasto-gravitational deformation response of the Earth’s solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earth’s deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earth’s surface, CMB and ICB, respectively. The characteristics of the Earth’s deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earth’s fluid outer core. Foundation item: State Natural Science Foundation of China (40174022 and 49925411) and the Projects from Chinese Academy of Sciences (KZCX2-106 and KZ952-J1-411).  相似文献   

19.
Which features of a geomagnetic field model on the surface of the core are really necessary in order to fit, within observational error, the field observations at and above the Earth's surface? To approach this question, we define ‘roughness’ in various ways as a norm on an appropriate Hilbert space of field models which is small when the field is smooth on the core surface. Then, we calculate the model with least norm (the smoothest model) which fits the data, sources outside the core being treated as noise. Sample calculations illustrate the effects of noise, of the choice of norm and of an uneven distribution of observing stations.  相似文献   

20.
Palaeomagnetic measurements of 1-m cores and a 9-m Delft core of Recent tidal-flat sediments from the Wash, England have shown that these sediments possess a record of the variation of the Earth's magnetic field. The record compares well with the historic-archaeomagnetic record for the period 0–1000 years B.P. but is offset down the core due to the remanence being of post-depositional origin. A period of at least 100 years is suggested for the alignment of particles during acquisition of the post-depositional remanence. Magnetite has been identified as the major carrier of this remanence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号