首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

2.
The convection electric field in the vicinity of the plasmapause in the midnight sector during magnetospheric substorms has been obtained on the basis of spectral analysis of Pc1 hydromagnetic (HM) waves observed at the low latitude station, Onagawa (Φ = 28.°3, Λ = 206.°8). Variations of the field are consistent for four independent substorm events studied. The calculation implies that the convection electric field increases westwards up to ~1.0 mV/m during the expansion phase of the substorms, changes polarity near the end of the expansion phase, and then points eastwards during the recovery phase.  相似文献   

3.
Detailed studies of the daytime E-region critical frequency at Aberystwyth (geomagnetic latitude +56°) show clear evidence for changes associated with both the axially-symmetric (Dst) and asymmetric (DS) components of the disturbance magnetic field. Comparison of the sensitivity of the E-region peak density to these two influences shows that the changes cannot entirely (if at all) be ascribed to the influence of electric currents in the region. It is suggested that a major role is played by dynamical influences associated with the neutral air “storm circulation” which distributes the energy fed into the auroral region to lower latitudes.  相似文献   

4.
An intense, localized auroral disturbance observed by Intercosmos-Bulgaria-1300 satellite in the morning sector at the altitude 850 km is analyzed in detail. The disturbance is characterized by strong “jumps” of electric and magnetic fields reaching ~ 80 mV/m and ~ 100 nT, fluctuations of ion density (Δn/n ~ 70%) and bursts of downward and upward energetic electron fluxes. Electric and magnetic disturbances display a distinct spatial-temporal relationship typical for the standing quasi-monochromatic wave (? ~ 1 Hz, λx ~ 10 km). The ratio of amplitudes of electric and magnetic fluctuations is equal to Alfvén velocity (ΔE/ΔBvA/c). However, a strong parallel component of the electric field (~ 30 mV/m) and large ion density fluctuations indicate significant changes of plasma properties (the effects of anomalous resistivity are possible).  相似文献   

5.
The UCL 3-dimensional time-dependent thermospheric model, with atomic and molecular components, is used to study composition changes in the neutral gas at F-layer heights produced by a severe magnetic storm. The computations give the mean molecular weight (MW), temperature and winds as functions of latitude, longitude, height and time for a period of 30 h.Starting from quiet-day conditions, the simulation starts with a 6-h “substorm” period in which strong electric fields are imposed in the auroral ovals, accompanied by particle input. Weaker electric fields are imposed for the remaining 24 h of the simulation. The energy input causes upwelling of air in the northern and southern auroral ovals, accompanied by localized composition changes (increases of MW), which spread no more than a few hundred kilometres from the energy sources. There is a corresponding downward settling of air at winter midlatitudes and low latitudes, producing widespread decreases of MW at a fixed pressure-level. These storm effects are superimposed on the quiet-day summer-to-winter circulation, in which upwelling occurs in the summer hemisphere and down welling in the winter hemisphere. The composition changes seen at a fixed height differ somewhat from those at a fixed pressure-level, because of the expansion resulting from the storm heating.The results can be related to the well-known prevalence of “negative” F-layer storms (with decreases of F2-layer electron density) in summer, and “positive” F-layer storms in winter and at low latitudes. However, the modelled composition changes are not propagated far enough to account for the observed occurrence of negative storms at some distance from the auroral ovals. This difficulty might be overcome if particle heating occurs well equatorward of the auroral ovals during magnetic storms, producing composition changes and negative storm effects at midlatitudes. Winds do not seem a likely cause of negative storm effects, but other factors (such as increases of vibrationally-excited N2) are possibly important.  相似文献   

6.
We examine the electric field hypothesis as a possible explanation of a stable auroral red arc. An electric field perpendicular to the geomagnetic field in the ionosphere heats the ambient F-region electrons and ions. Given large enough electric fields, the electrons can be heated sufficiently to excite the OI (1D) term of atomic oxygen by electron impact, giving rise to the λ6300 emission characteristic of the red arc. The electron and ion heating rates are determined by the relative drift between the plasma and neutral gas.  相似文献   

7.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

8.
Three dimensional electric fields were measured at the altitude of about 27 km in the stratosphere over the Pacific Ocean about 200–400 km away from the Sanriku coast of Honsyu Island (L = 1·4) on 16–17 October 1973, which was magnetically disturbed. The average horizontal electric field thus measured is about 10 mV/m, and the electric field vectors made clockwise semidiurnal rotations rather than diurnal. Daily variation of this electric field was compared with data at L = 2·7–3·5 published by Mozer (1973) and was found to be very similar. This suggests that these electric fields are of common origin in the plasmasphere. From their mean daily variation it is estimated that the plasmaspheric convection is decreased in the night side and is increased in the day side by 200–300 m/sec, and there is an outward flow in the first half of the afternoon and an inward flow in the plasma bulge region of about 500 m/sec.  相似文献   

9.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

10.
Omnidirectional intensities of electrons with energies Ee > 1·5 MeV detected by a low orbiting polar satellite (GRS-A/AZUR) in the outer radiation belt are examined during disturbed times including the main phase of a very strong geomagnetic storm on 8 March 1970. The particle intensity features are discussed in relationship with proposed magnetospheric processes. It is found that a superposition of the two following effects can explain the particle behavior in the trapping region:(A) Radial diffusion. After the southward turning of the interplanetary field an inward motion of both the energetic electron belt and the plasmapause took place. This effect was observed at L > 3 RE and we attribute it to enhanced magnetospheric electric field fluctuations. Later, a strong interplanetary shock impinged upon the magnetosphere which was related to the triggering of intense magnetospheric substorms; a further inward diffusion occurred at L ? 3 RE, accompanied by an inward movement of the electron slot. A rough estimation of the diffusion coefficient leads to a power spectrum of the electric field fluctuations which seems to be consistent with experimentally determined power spectra (Mozer, 1971).(B) Adiabatic response to ring current changes. Large energetic electron intensity decreases within the outer radiation belt are shown to be adiabatic changes due to ring current variations. The influence of the inflation of the magnetosphere due to the developing ring current is simultaneously observed by the decrease of the solar proton outoff (1·7-2·5 MeV).  相似文献   

11.
The continuity, momentum and energy hydrodynamic equations for an O+-H+ ionosphere have been solved self-consistently for steady state conditions when a perpendicular (convection) electric field is present. Comparison of the H+ temperature profiles obtained with and without the electric field show that the effect of the electric field is to enhance the H+ temperature at high altitudes from about 3600 to 6400 K. Due to ion heating by the electric field, there is a net reduction of O+ in the F2-region as compared with the case of a non-convecting ionosphere. When the reduction of O+ is neglected, the electric field acts to increase the H+ outward flux from 8.3 × 107 to 2.7 × 108 cm?2 sec?1 for average ionospheric conditions. However, when the reduction of O+ is included, there is a net reduction in the outward H+ flux. Nevertheless, the convection electric field still results in an increase in the rate of depletion of the F-re m?1 electric field.  相似文献   

12.
Observations made by the ASPERA-3 experiment onboard the Mars Express spacecraft found within the martian magnetosphere beams of planetary ions. In the energy (E/q)-time spectrograms these beams are often displayed as dispersive-like, ascending or descending (whether the spacecraft moves away or approach the planet) structures. A linear dependence between energy gained by the beam ions and the altitude from the planet suggests their acceleration in the electric field. The values of the electric field evaluated from ion energization occur close to the typical values of the interplanetary motional electric field. This suggests an effective penetration of the solar wind electric field deep into the martian magnetosphere or generation of large fields within the magnetosphere. Two different classes of events are found. At the nominal solar wind conditions, a ‘penetration’ occurs near the terminator. At the extreme solar wind conditions, the boundary of the induced magnetosphere moves to a more dense upper atmosphere that leads to a strong scavenging of planetary ions from the dayside regions.  相似文献   

13.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

14.
15.
When observed noontime values of the maximum electron density, NMAX(F2), in the ionospheric F2 region are plotted as a function of magnetic latitude, a curve is produced which has two peaks, one on either side of the dip equator at ±16° dip latitude. This paper theoretically investigates the daily variation of this latitudinal distribution in NMAX(F2) (the so-called Appleton or equatorial anomaly) and specifically attempts to account for the longitudinal differences observed between the American and Asian sectors.In Part II, models of the neutral atmosphere, production, loss and diffusion rates, neutral wind, and electric field are described and the electron densities obtained by solving the continuity equation utilizing these models are presented. In each sector, the extent to which the equatorial anomaly's daily variation is affected by changes in the geomagnetic field configuration, neutral wind, and E × B drift is examined. It is found that development of the anomaly is most sensitive to the electric field model assumed, and that the observed differences at the magnetic equator between the American and Asian sectors could be accounted for by an upward E × B drift which commences an hour or two earlier in the Asian sector.  相似文献   

16.
By using the method of 2-dimensional, 3-component full particle simulation, collisionless magnetic reconnection in the presence of various initial guide fields and the Harris current sheet with 1-dimensional initial state are studied. The results show that strong guide fields with Bz0 > 0.5B0 can evidently alter not only the trajectory of the particles, but also the structure of the electric and velocity fields in the vicinity of the reconnection region, thereby affecting the rate of reconnection and the acceleration of electrons. The generalized Ohm's law is employed to interpret the structural characteristics of the electric fields with various guide fields. Also, via the tracing of the electron beam near he diffusion region, it is revealed that in the 2-D model, for both strong and weak guide fields, the induced electric field perpendicular to the simulation plane at the center of the diffusion region plays the major role in the acceleration of electrons. The contribution of the planar electric field outside the diffusion region is very small.  相似文献   

17.
During very intense geomagnetic storm of November 7–8, 2004 simultaneous presence of storm time disturbance dynamo and eastward and westward directed prompt penetration electric fields inferred from the ground based magnetometer data in the 75° E sector is presented. Magnetometer observations show that, on the whole, average ΔH variation on 8 November remains below the night time level compared to its quiet day variation. A number of upward and downward excursions have been observed between 0130 UT and 0800 UT in the ΔH variation on 8 November. These excursions in ΔH have been attributed to the episodes of eastward and westward prompt penetrating electric fields. Ionospheric response in the equatorial ionization anomaly region along 75° E has also been studied using the total electron content data recorded at five GPS stations, namely Udaipur, Bengaluru (IISC), Hyderabad (HYDE), Maldives (MALD) and Diego Garcia (DGAR). Observation of markedly suppressed EIA, in conjunction with ΔH variation which was m negative during the daytime on 8 November, indicates the presence of an external field of opposite polarity (the disturbance dynamo electric field) that either undermined, or overshadowed the daytime ambient (eastward) electric field to the extent that the equatorial plasma fountain could not become effective.  相似文献   

18.
The theory of dissipation of ionospheric electric currents is extended to include viscosity. In a steady state (i.e. usually above about 140 km altitude) the joule plus viscous heating may be calculated by μ∇2v. E × B/B2. At lower altitudes where viscosity may, in some circumstances, be relatively unimportant the joule dissipation is calculated by the usual formula j. (E + v × B). In a prevalent model of the auroral electrojets it is found that the joule heating can be much more intense outside auroral forms than within them. Heating due to auroral electrojets cause a semi-annual variation in the thermosphere. Movement caused by auroral electric fields make a contribution to the super-rotation of the midlatitude upper atmosphere. Random electric fields lead to an eddy ‘viscosity’ or ‘exchange coefficientrs in the upper thermosphere of magnitude ρER2/B3tR2|∇E|. where tR is the correlation time of the random component of electric fields ER and ρ is air density. Theoretical conditions for significant heating by field-aligned currents are derived.  相似文献   

19.
In the mid-latitude E-region, the wind-shear mechanism produces thin ionized layers at levels where the vertical ion velocity is zero. We show that such layers conduct electric current only towards the magnetic equator, and not in the zonal direction. We surmise that this property may influence the electric field distribution in the nocturnal ionosphere, and possibly also the coupling between ion drifts and neutral air winds in the F-region. Detailed case studies of nocturnal layers located near the peak of ion Pedersen conductivity (around 130km) are needed to test this idea.  相似文献   

20.
We show that the pair production rate in a strong magnetic field is substantially altered when an electric field is also included. We illustrate and emphasize this significant alteration by considering a few special cases. In the vicinity of the polar cap of a rotating magnetized neutron star it is currently though thatboth steady electric and magnetic fields must be present. The results presented here then indicate that some considerable degree of caution must be exercised in applying pair production rates calculated under the assumption of zero electric field to the problems of pulsar emission and the generation and maintence of pulsar magnetospheres. In general such rates are very different from the rate computed allowing for the existence of an electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号